ترغب بنشر مسار تعليمي؟ اضغط هنا

An upper limit on the mass of the circumplanetary disk for DH Tau b

168   0   0.0 ( 0 )
 نشر من قبل Schuyler Wolff
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

DH Tau is a young ($sim$1 Myr) classical T Tauri star. It is one of the few young PMS stars known to be associated with a planetary mass companion, DH Tau b, orbiting at large separation and detected by direct imaging. DH Tau b is thought to be accreting based on copious H${alpha}$ emission and exhibits variable Paschen Beta emission. NOEMA observations at 230 GHz allow us to place constraints on the disk dust mass for both DH Tau b and the primary in a regime where the disks will appear optically thin. We estimate a disk dust mass for the primary, DH Tau A of $17.2pm1.7,M_{oplus}$, which gives a disk-to-star mass ratio of 0.014 (assuming the usual Gas-to-Dust mass ratio of 100 in the disk). We find a conservative disk dust mass upper limit of 0.42$M_{oplus}$ for DH Tau b, assuming that the disk temperature is dominated by irradiation from DH Tau b itself. Given the environment of the circumplanetary disk, variable illumination from the primary or the equilibrium temperature of the surrounding cloud would lead to even lower disk mass estimates. A MCFOST radiative transfer model including heating of the circumplanetary disk by DH Tau b and DH Tau A suggests that a mass averaged disk temperature of 22 K is more realistic, resulting in a dust disk mass upper limit of 0.09$M_{oplus}$ for DH Tau b. We place DH Tau b in context with similar objects and discuss the consequences for planet formation models.



قيم البحث

اقرأ أيضاً

The mass of the $tau$ lepton has been measured in the decay mode $tau to 3pi u_tau$ using a pseudomass technique. The result obtained from $414 mathrm{fb}^{-1}$ of data collected with the Belle detector is $M_tau = (1776.61pm 0.13 {(stat.)} pm 0.35 {(sys.)})$ MeV/$c^2$. The upper limit on the relative mass difference between positive and negative $tau$ leptons is $|M_{tau^+}-M_{tau^-}|/M_{tau} < 2.8 times 10^{-4}$ at 90% confidence level.
The mass of the $tau$-lepton has been measured in the decay modes $tau to 3pi u_tau$ and $tau to 3pi pi^0 u_tau$ using a pseudomass technique. The preliminary result is $1776.71pm 0.25 {(stat)} pm 0.62 {(syst)}$ MeV. The preliminary value of an uppe r limit on the relative mass difference between positive and negative $tau$ leptons is $|(M_{tau^+}-M_{tau^-})|/M_{mathrm{average}}$ is $5.0 times 10^{-4}$ at 90% CL.
67 - J. Szulagyi , F. Masset , E. Lega 2016
We present three-dimensional simulations with nested meshes of the dynamics of the gas around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We focus on the circumplanetary gas flow, determining its characteristics at very high resolution ($80%$ of Jupiters diameter). In our nominal simulation where the temperature evolves freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope was formed filling the entire Roche-lobe. Because of our equation of state is simplified and probably overestimates the temperature, we also performed simulations with limited maximal temperatures in the planet region (1000 K, 1500 K, and 2000 K). In these fixed temperature cases circumplanetary disks (CPDs) were formed. This suggests that the capability to form a circumplanetary disk is not simply linked to the mass of the planet and its ability to open a gap. Instead, the gas temperature at the planets location, which depends on its accretion history, plays also fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is characterized by internal convection and almost stalled rotation.
We present the first observational evidence for a circumplanetary disk around the protoplanet PDS~70~b, based on a new spectrum in the $K$ band acquired with VLT/SINFONI. We tested three hypotheses to explain the spectrum: Atmospheric emission from t he planet with either (1) a single value of extinction or (2) variable extinction, and (3) a combined atmospheric and circumplanetary disk model. Goodness-of-fit indicators favour the third option, suggesting circumplanetary material contributing excess thermal emission --- most prominent at $lambda gtrsim 2.3 mu$m. Inferred accretion rates ($sim 10^{-7.8}$--$10^{-7.3} M_J$ yr$^{-1}$) are compatible with observational constraints based on the H$alpha$ and Br$gamma$ lines. For the planet, we derive an effective temperature of 1500--1600 K, surface gravity $log(g)sim 4.0$, radius $sim 1.6 R_J$, mass $sim 10 M_J$, and possible thick clouds. Models with variable extinction lead to slightly worse fits. However, the amplitude ($Delta A_V gtrsim 3$mag) and timescale of variation ($lesssim$~years) required for the extinction would also suggest circumplanetary material.
We present ALMA observations of the FW Tau system, a close binary pair of M5 stars with a wide-orbit (300 AU projected separation) substellar companion. The companion is extremely faint and red in the optical and near-infrared, but boasts a weak far- infrared excess and optical/near-infrared emission lines indicative of a primordial accretion disk of gas and dust. The component-resolved 1.3 mm continuum emission is found to be associated only with the companion, with a flux (1.78 +/- 0.03 mJy) that indicates a dust mass of 1-2 M_Earth. While this mass reservoir is insufficient to form a giant planet, it is more than sufficient to produce an analog of the Kepler-42 exoplanetary system or the Galilean satellites. The mass and geometry of the disk-bearing FW Tau companion remains unclear. Near-infrared spectroscopy shows deep water bands that indicate a spectral type later than M5, but substantial veiling prevents a more accurate determination of the effective temperature (and hence mass). Both a disk-bearing planetary-mass companion seen in direct light or a brown dwarf tertiary viewed in light scattered by an edge-on disk or envelope remain possibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا