ترغب بنشر مسار تعليمي؟ اضغط هنا

How fast do Jupiters grow? Signatures of the snowline and growth rate in the distribution of gas giant planets

130   0   0.0 ( 0 )
 نشر من قبل W. K. M. Rice
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here observational evidence that the snowline plays a significant role in the formation and evolution of gas giant planets. When considering the population of observed exoplanets, we find a boundary in mass-semimajor axis space that suggests planets are preferentially found beyond the snowline prior to undergoing gap-opening inward migration and associated gas accretion. This is consistent with theoretical models suggesting that sudden changes in opacity -- as would occur at the snowline -- can influence core migration. Furthermore, population synthesis modelling suggests that this boundary implies that gas giant planets accrete ~ 70 % of the inward flowing gas, allowing ~ 30$ % through to the inner disc. This is qualitatively consistent with observations of transition discs suggesting the presence of inner holes, despite there being ongoing gas accretion.



قيم البحث

اقرأ أيضاً

Observations of the population of cold Jupiter planets ($r>$1 AU) show that nearly all of these planets orbit their host star on eccentric orbits. For planets up to a few Jupiter masses, eccentric orbits are thought to be the outcome of planet-planet scattering events taking place after gas dispersal. We simulate the growth of planets via pebble and gas accretion as well as the migration of multiple planetary embryos in their gas disc. We then follow the long-term dynamical evolution of our formed planetary system up to 100 Myr after gas disc dispersal. We investigate the importance of the initial number of protoplanetary embryos and different damping rates of eccentricity and inclination during the gas phase for the final configuration of our planetary systems. We constrain our model by comparing the final dynamical structure of our simulated planetary systems to that of observed exoplanet systems. Our results show that the initial number of planetary embryos has only a minor impact on the final orbital eccentricity distribution of the giant planets, as long as damping of eccentricity and inclination is efficient. If damping is inefficient (slow), systems with a larger initial number of embryos harbor larger average eccentricities. In addition, for slow damping rates, we observe that scattering events already during the gas disc phase are common and that the giant planets formed in these simulations match the observed giant planet eccentricity distribution best. These simulations also show that massive giant planets (above Jupiter mass) on eccentric orbits are less likely to host inner super-Earths as these get lost during the scattering phase, while systems with less massive giant planets on nearly circular orbits should harbor systems of inner super-Earths. Finally, our simulations predict that giant planets are on average not single, but live in multi-planet systems.
SPHERE (Beuzit et al,. 2019) has now been in operation at the VLT for more than 5 years, demonstrating a high level of performance. SPHERE has produced outstanding results using a variety of operating modes, primarily in the field of direct imaging o f exoplanetary systems, focusing on exoplanets as point sources and circumstellar disks as extended objects. The achievements obtained thus far with SPHERE (~200 refereed publications) in different areas (exoplanets, disks, solar system, stellar physics...) have motivated a large consortium to propose an even more ambitious set of science cases, and its corresponding technical implementation in the form of an upgrade. The SPHERE+ project capitalizes on the expertise and lessons learned from SPHERE to push high contrast imaging performance to its limits on the VLT 8m-telescope. The scientific program of SPHERE+ described in this document will open a new and compelling scientific window for the upcoming decade in strong synergy with ground-based facilities (VLT/I, ELT, ALMA, and SKA) and space missions (Gaia, JWST, PLATO and WFIRST). While SPHERE has sampled the outer parts of planetary systems beyond a few tens of AU, SPHERE+ will dig into the inner regions around stars to reveal and characterize by mean of spectroscopy the giant planet population down to the snow line. Building on SPHEREs scientific heritage and resounding success, SPHERE+ will be a dedicated survey instrument which will strengthen the leadership of ESO and the European community in the very competitive field of direct imaging of exoplanetary systems. With enhanced capabilities, it will enable an even broader diversity of science cases including the study of the solar system, the birth and death of stars and the exploration of the inner regions of active galactic nuclei.
Extrasolar satellites are generally too small to be detected by nominal searches. By analogy to the most active body in the Solar System, Io, we describe how sodium (Na I) and potassium (K I) $textit{gas}$ could be a signature of the geological activ ity venting from an otherwise hidden exo-Io. Analyzing $sim$ a dozen close-in gas giants hosting robust alkaline detections, we show that an Io-sized satellite can be stable against orbital decay below a planetary tidal $mathcal{Q}_p lesssim 10^{11}$. This tidal energy is focused into the satellite driving a $sim 10^{5 pm 2}$ higher mass loss rate than Ios supply to Jupiters Na exosphere, based on simple atmospheric loss estimates. The remarkable consequence is that several exo-Io column densities are on average $textit{more than sufficient}$ to provide the $sim$ 10$^{10 pm 1}$ Na cm$^{-2}$ required by the equivalent width of exoplanet transmission spectra. Furthermore, the benchmark observations of both Jupiters extended ($sim 1000$ R$_J$) Na exosphere and Jupiters atmosphere in transmission spectroscopy yield similar Na column densities that are purely exogenic in nature. As a proof of concept, we fit the high-altitude Na at WASP 49-b with an ionization-limited cloud similar to the observed Na profile about Io. Moving forward, we strongly encourage time-dependent ingress and egress monitoring along with spectroscopic searches for other volcanic volatiles.
108 - James Guillochon 2010
The discovery of Jupiter-mass planets in close orbits about their parent stars has challenged models of planet formation. Recent observations have shown that a number of these planets have highly inclined, sometimes retrograde orbits about their pare nt stars, prompting much speculation as to their origin. It is known that migration alone cannot account for the observed population of these misaligned hot Jupiters, which suggests that dynamical processes after the gas disc dissipates play a substantial role in yielding the observed inclination and eccentricity distributions. One particularly promising candidate is planet-planet scattering, which is not very well understood in the non-linear regime of tides. Through three-dimensional hydrodynamical simulations of multi-orbit encounters, we show that planets that are scattered into an orbit about their parent stars with closest approach distance being less than approximately three times the tidal radius are either destroyed or completely ejected from the system. We find that as few as 5 and as many as 18 of the currently known hot Jupiters have a maximum initial apastron for scattering that lies well within the ice line, implying that these planets must have migrated either before or after the scattering event that brought them to their current positions. If stellar tides are unimportant $(Q_ast gtrsim 10^7)$, disk migration is required to explain the existence of the hot Jupiters present in these systems. Additionally, we find that the disruption and/or ejection of Jupiter-mass planets deposits a Suns worth of angular momentum onto the host star. For systems in which planet-planet scattering is common, we predict that planetary hosts have up to a 35% chance of possessing an obliquity relative to the invariable plane of greater than 90 degrees.
Planets form in the discs of gas and dust that surround young stars. It is not known whether gas giant planets on wide orbits form the same way as Jupiter or by fragmentation of gravitationally unstable discs. Here we show that a giant planet, which has formed in the outer regions of a protostellar disc, initially migrates fast towards the central star (migration timescale ~10,000 yr) while accreting gas from the disc. However, in contrast with previous studies, we find that the planet eventually opens up a gap in the disc and the migration is essentially halted. At the same time, accretion-powered radiative feedback from the planet, significantly limits its mass growth, keeping it within the planetary mass regime (i.e. below the deuterium burning limit) at least for the initial stages of disc evolution. Giant planets may therefore be able to survive on wide orbits despite their initial fast inward migration, shaping the environment in which terrestrial planets that may harbour life form.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا