ﻻ يوجد ملخص باللغة العربية
We initiate the study of a new parameterization of graph problems. In a multiple interval representation of a graph, each vertex is associated to at least one interval of the real line, with an edge between two vertices if and only if an interval associated to one vertex has a nonempty intersection with an interval associated to the other vertex. A graph on n vertices is a k-gap interval graph if it has a multiple interval representation with at most n+k intervals in total. In order to scale up the nice algorithmic properties of interval graphs (where k=0), we parameterize graph problems by k, and find FPT algorithms for several problems, including Feedback Vertex Set, Dominating Set, Independent Set, Clique, Clique Cover, and Multiple Interval Transversal. The Coloring problem turns out to be W[1]-hard and we design an XP algorithm for the recognition problem.
We prove new complexity results for Feedback Vertex Set and Even Cycle Transversal on $H$-free graphs, that is, graphs that do not contain some fixed graph $H$ as an induced subgraph. In particular, we prove that both problems are polynomial-time sol
Best match graphs (BMG) are a key intermediate in graph-based orthology detection and contain a large amount of information on the gene tree. We provide a near-cubic algorithm to determine whether a BMG is binary-explainable, i.e., whether it can be
A vertex subset $I$ of a graph $G$ is called a $k$-path vertex cover if every path on $k$ vertices in $G$ contains at least one vertex from $I$. The textsc{$k$-Path Vertex Cover Reconfiguration ($k$-PVCR)} problem asks if one can transform one $k$-pa
Paths $P_1,ldots,P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to decide if a graph $G$
A natural way of increasing our understanding of NP-complete graph problems is to restrict the input to a special graph class. Classes of $H$-free graphs, that is, graphs that do not contain some graph $H$ as an induced subgraph, have proven to be an