ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of the optical crosstalk in a multi-channel silicon photomultiplier array

129   0   0.0 ( 0 )
 نشر من قبل Takahiko Masuda Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and study a method of optical crosstalk suppression for silicon photomultipliers (SiPMs) using optical filters. We demonstrate that attaching absorptive visible bandpass filters to the SiPM can substantially reduce the optical crosstalk. Measurements suggest that the absorption of near infrared light is important to achieve this suppression. The proposed technique can be easily applied to suppress the optical crosstalk in SiPMs in cases where filtering near infrared light is compatible with the application.



قيم البحث

اقرأ أيضاً

NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. Th is is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas. Demonstrating the ability to identify the MIP and blob regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Qbetabeta).
This work illustrates and compares some methods to measure the most relevant parameters of silicon photo-multipliers (sipm{}s), such as photon detection efficiency as a function of over-voltage and wavelength, dark count rate, optical cross-talk, aft erpulse probability. For the measurement of the breakdown voltage, $V_{BD}$, several methods using the current-voltage $IV$ curve are compared, such as the IV Model, the relative logarithmic derivative, the inverse logarithmic derivative, the second logarithmic derivative, and the third derivative models. We also show how some of these characteristics can be quite well described by few parameters and allow, for example, to build a function of the wavelength and over-voltage describing the photodetection efficiency. This is fundamental to determine the working point of SiPMs in applications where external factors can affect it. These methods are applied to the large area monolithic hexagonal SiPM S10943-2832(X), developed in collaboration with Hamamatsu and adopted for a camera for a gamma-ray telescope, called the SST-1M. We describe the measurements of the performance at room temperature of this device. The methods used here can be applied to any other device and the physics background discussed here are quite general and valid for a large phase-space of the parameters.
A simple method is presented for the simultaneous off-line synchronization of the digitally recorded data-streams from a multi-channel silicon telescope. The method is based both on the synchronization between the separate pairs of silicon strips and on the synchronization relative to an external timing device. Though only a reduced subset of these constraints is necessary in ideal circumstances, it is shown that this minimal set of conditions may not be sufficient for adequate synchronization in all cases. All available sources of information are therefore considered, in order to constrain the final synchronization as well as possible.
PARISROC is a complete read out chip, in AMS SiGe 0.35 micron technology, for photomultipliers array. It is a front-end electronics ASIC which allows triggerless acquisition for the next generation of neutrino experiments. These detectors have place in megaton size water tanks and will require very large surface of photo-detection. An R & D program, funded by French national agency for research and called PMm2, proposes to segment the very large surface of photo-detection in macro pixels made of 16 photomultiplier tubes connected to an autonomous front-end electronics. The ASIC allows triggerless acquisition and only send out the relevant data by network to the central data storage. This data management reduces considerably the cost of these detectors. This paper describes the front-end electronics ASIC called PARISROC which integrates totally independents 16 channels with a variable gain and provides charge and time measurement with a 12-bit ADC and a 24-bits Counter.
To increase the light yield of a liquid Ar (LAr) detector, we optimized the evaporation technique of tetraphenyl butadiene (TPB) on the detector surface and tested the operability of a silicon photomultiplier (SiPM), namely, the multi-pixel photon co unter with through-silicon-via (TSV-MPPC, Hamamatsu Photonics K.K.) at LAr temperature. TPB converts the LAr scintillations (vacuum ultraviolet light) to visible light, which can be detected by high-sensitivity photosensors. Because the light yield depends on the deposition mass of TPB on the inner surface of the detector, we constructed a well-controlled TPB evaporator to ensure reproducibility and measured the TPB deposition mass using a quartz crystal microbalance sensor. After optimizing the deposition mass of TPB (30 $mu g/cm^2$ on the photosensor window and 40 $mu g/cm^2$ on the detector wall), the light yield was 12.8 $pm$ 0.3 p.e./keVee using PMTs with a quantum efficiency of approximately 30% for TPB-converted light. We also tested the low-temperature tolerance of TSV-MPPC, which has a high photon-detection efficiency, in the LAr environment. The TSV-MPPC detected the LAr scintillations converted by TPB with a photon-detection efficiency exceeding 50%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا