ﻻ يوجد ملخص باللغة العربية
This work illustrates and compares some methods to measure the most relevant parameters of silicon photo-multipliers (sipm{}s), such as photon detection efficiency as a function of over-voltage and wavelength, dark count rate, optical cross-talk, afterpulse probability. For the measurement of the breakdown voltage, $V_{BD}$, several methods using the current-voltage $IV$ curve are compared, such as the IV Model, the relative logarithmic derivative, the inverse logarithmic derivative, the second logarithmic derivative, and the third derivative models. We also show how some of these characteristics can be quite well described by few parameters and allow, for example, to build a function of the wavelength and over-voltage describing the photodetection efficiency. This is fundamental to determine the working point of SiPMs in applications where external factors can affect it. These methods are applied to the large area monolithic hexagonal SiPM S10943-2832(X), developed in collaboration with Hamamatsu and adopted for a camera for a gamma-ray telescope, called the SST-1M. We describe the measurements of the performance at room temperature of this device. The methods used here can be applied to any other device and the physics background discussed here are quite general and valid for a large phase-space of the parameters.
The performance of a silicon photomultiplier has been assessed at low temperature in order to evaluate its suitability as a scintillation readout device in liquid argon particle physics detectors. The gain, measured as 2.1E6 for a constant over-volta
This paper describes an experimental setup that has been developed to measure and characterise properties of Silicon Photomultipliers (SiPM). The measured SiPM properties are of general interest for a multitude of potential applications and comprise
The temperature of a nonneutral plasma confined in a Penning-Malmberg trap can be determined by slowly lowering one side of the traps electrostatic axial confinement barrier; the temperature is inferred from the rate at which particles escape the tra
We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The
Decreasing the operation temperature of a Silicon Photo-Multiplier (SiPM) leads to a drop in its dark noise. Some experiments consider cold temperatures as an option for low noise applications of SiPM. One of those is the TAO detector, which requires