ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Extractor-Paraphraser based Abstractive Summarization

132   0   0.0 ( 0 )
 نشر من قبل Anubhav Jangra
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The anthology of spoken languages today is inundated with textual information, necessitating the development of automatic summarization models. In this manuscript, we propose an extractor-paraphraser based abstractive summarization system that exploits semantic overlap as opposed to its predecessors that focus more on syntactic information overlap. Our model outperforms the state-of-the-art baselines in terms of ROUGE, METEOR and word mover similarity (WMS), establishing the superiority of the proposed system via extensive ablation experiments. We have also challenged the summarization capabilities of the state of the art Pointer Generator Network (PGN), and through thorough experimentation, shown that PGN is more of a paraphraser, contrary to the prevailing notion of a summarizer; illustrating its incapability to accumulate information across multiple sentences.



قيم البحث

اقرأ أيضاً

131 - Tianyang Xu , Chunyun Zhang 2021
Sequence-to-sequence models provide a viable new approach to generative summarization, allowing models that are no longer limited to simply selecting and recombining sentences from the original text. However, these models have three drawbacks: their grasp of the details of the original text is often inaccurate, and the text generated by such models often has repetitions, while it is difficult to handle words that are beyond the word list. In this paper, we propose a new architecture that combines reinforcement learning and adversarial generative networks to enhance the sequence-to-sequence attention model. First, we use a hybrid pointer-generator network that copies words directly from the source text, contributing to accurate reproduction of information without sacrificing the ability of generators to generate new words. Second, we use both intra-temporal and intra-decoder attention to penalize summarized content and thus discourage repetition. We apply our model to our own proposed COVID-19 paper title summarization task and achieve close approximations to the current model on ROUEG, while bringing better readability.
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstractive dialogue summarization a challenging task. In this work, we propose the first unsupervised abstractive dialogue summarization model for tete-a- tetes (SuTaT). Unlike standard text summarization, a dialogue summarization method should consider the multi-speaker scenario where the speakers have different roles, goals, and language styles. In a tete-a-tete, such as a customer-agent conversation, SuTaT aims to summarize for each speaker by modeling the customer utterances and the agent utterances separately while retaining their correlations. SuTaT consists of a conditional generative module and two unsupervised summarization modules. The conditional generative module contains two encoders and two decoders in a variational autoencoder framework where the dependencies between two latent spaces are captured. With the same encoders and decoders, two unsupervised summarization modules equipped with sentence-level self-attention mechanisms generate summaries without using any annotations. Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations, and is capable of dialogue classification and single-turn conversation generation.
173 - Yang Liu , Yifei Sun , Vincent Gao 2021
E-commerce stores collect customer feedback to let sellers learn about customer concerns and enhance customer order experience. Because customer feedback often contains redundant information, a concise summary of the feedback can be generated to help sellers better understand the issues causing customer dissatisfaction. Previous state-of-the-art abstractive text summarization models make two major types of factual errors when producing summaries from customer feedback, which are wrong entity detection (WED) and incorrect product-defect description (IPD). In this work, we introduce a set of methods to enhance the factual consistency of abstractive summarization on customer feedback. We augment the training data with artificially corrupted summaries, and use them as counterparts of the target summaries. We add a contrastive loss term into the training objective so that the model learns to avoid certain factual errors. Evaluation results show that a large portion of WED and IPD errors are alleviated for BART and T5. Furthermore, our approaches do not depend on the structure of the summarization model and thus are generalizable to any abstractive summarization systems.
Pointer-generator network is an extremely popular method of text summarization. More recent works in this domain still build on top of the baseline pointer generator by augmenting a content selection phase, or by decomposing the decoder into a contex tual network and a language model. However, all such models that are based on the pointer-generator base architecture cannot generate novel words in the summary and mostly copy words from the source text. In our work, we first thoroughly investigate why the pointer-generator network is unable to generate novel words, and then address that by adding an Out-of-vocabulary (OOV) penalty. This enables us to improve the amount of novelty/abstraction significantly. We use normalized n-gram novelty scores as a metric for determining the level of abstraction. Moreover, we also report rouge scores of our model since most summarization models are evaluated with R-1, R-2, R-L scores.
Community Question Answering (CQA) forums such as Stack Overflow and Yahoo! Answers contain a rich resource of answers to a wide range of questions. Each question thread can receive a large number of answers with different perspectives. The goal of m ulti-perspective answer summarization is to produce a summary that includes all perspectives of the answer. A major obstacle for multi-perspective, abstractive answer summarization is the absence of a dataset to provide supervision for producing such summaries. This work introduces a novel dataset creation method to automatically create multi-perspective, bullet-point abstractive summaries from an existing CQA forum. Supervision provided by this dataset trains models to inherently produce multi-perspective summaries. Additionally, to train models to output more diverse, faithful answer summaries while retaining multiple perspectives, we propose a multi-reward optimization technique coupled with a sentence-relevance prediction multi-task loss. Our methods demonstrate improved coverage of perspectives and faithfulness as measured by automatic and human evaluations compared to a strong baseline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا