ﻻ يوجد ملخص باللغة العربية
It is well known that asymptotically flat black holes in general relativity have a vanishing static, conservative tidal response. We show that this is a result of linearly realized symmetries governing static (spin 0,1,2) perturbations around black holes. The symmetries have a geometric origin: in the scalar case, they arise from the (E)AdS isometries of a dimensionally reduced black hole spacetime. Underlying the symmetries is a ladder structure which can be used to construct the full tower of solutions, and derive their general properties: (1) solutions that decay with radius spontaneously break the symmetries, and must diverge at the horizon; (2) solutions regular at the horizon respect the symmetries, and take the form of a finite polynomial that grows with radius. Taken together, these two properties imply that static response coefficients -- and in particular Love numbers -- vanish. Moreover, property (1) alone is sufficient to forbid the existence of black holes with linear (perturbative) hair. We also discuss the manifestation of these symmetries in the effective point particle description of a black hole, showing explicitly that for scalar probes the worldline couplings associated with a non-trivial tidal response and scalar hair must vanish in order for the symmetries to be preserved.
We derive the quadratic action for the physical degrees of freedom of massless spin-0, spin-1, and spin-2 perturbations on a Schwarzschild--(A)dS background in arbitrary dimensions. We then use these results to compute the static response of asymptot
It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a
To perform realistic tests of theories of gravity, we need to be able to look beyond general relativity and evaluate the consistency of alternative theories with observational data from, especially, gravitational wave detections using, for example, a
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will b