ﻻ يوجد ملخص باللغة العربية
Composite quantum compounds (CQC) are classic example of quantum materials which host more than one apparently distinct quantum phenomenon in physics. Magnetism, topological superconductivity, Rashba physics etc. are few such quantum phenomenon which are ubiquitously observed in several functional materials and can co-exist in CQCs. In this letter, we use {it ab-initio} calculations to predict the co-existence of two incompatible phenomena, namely topologically non-trivial Weyl semimetal and spin gapless semiconducting (SGS) behavior, in a single crystalline system. SGS belong to a special class of spintronics material which exhibit a unique band structure involving a semiconducting state for one spin channel and a gapless state for the other. We report such a SGS behavior in conjunction with the topologically non-trivial multi-Weyl Fermions in MnPO$_4$. Interestingly, these Weyl nodes are located very close to the Fermi level with the minimal trivial band density. A drumhead like surface state originating from a nodal loop around Y-point in the Brillouin zone is observed. A large value of the simulated anomalous Hall conductivity (1265 $Omega^{-1} cm^{-1}$) indirectly reflects the topological non-trivial behavior of this compound. Such co-existent quantum phenomena are not common in condensed matter systems and hence it opens up a fertile ground to explore and achieve newer functional materials.
Spin gapless semiconductors (SGS) form a new class of magnetic semiconductors, which has a band gap for one spin sub band and zero band gap for the other, and thus are useful for tunable spin transport based applications. In this paper, we report the
The BaAl$_4$ prototype crystal structure is the most populous of all structure types, and is the building block for a diverse set of sub-structures including the famous ThCr$_2$Si$_2$ family that hosts high-temperature superconductivity and numerous
Surface magnetism and its correlation with the electronic structure are critical to understand the gapless topological surface state in the intrinsic magnetic topological insulator MnBi$_2$Te$_4$. Here, using static and time resolved angle-resolved p
As the bulk single-crystal MoN2/ReN2 with a layered structure was successfully synthesized in experiment, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth-metal (Rem) elements and propose
The diamond and zinc-blende semiconductors are well-known and have been widely studied for decades. Yet, their electronic structure still surprises with unexpected topological properties of the valence bands. In this joint theoretical and experimenta