ﻻ يوجد ملخص باللغة العربية
As the bulk single-crystal MoN2/ReN2 with a layered structure was successfully synthesized in experiment, transition-metal dinitrides have attracted considerable attention in recent years. Here, we focus on rare-earth-metal (Rem) elements and propose seven stable Rem dinitride monolayers with a 1T structure, namely 1T-RemN2. These monolayers have a ferromagnetic ground state with in-plane magnetization. Without spin-orbit coupling (SOC) effect, the band structures are spin-polarized with Dirac points at the Fermi level. Remarkably, the 1T-LuN2 monolayer shows an isotropic magnetic anisotropy energy in the xy-plane with in-plane magnetization, indicating easy tunability of the magnetization direction. When rotating the magnetization vector in the xy-plane, our proposed model can accurately describe the variety of the SOC band gap and two topological states (Weyl-like semimetal and Chern insulator states) appear with tunable properties. The Weyl-like semimetal state is a critical point between the two Chern insulator states with opposite sign of the Chern numbers. The large nontrivial band gap (up to 60.3 meV) and the Weyl-like semimetal state are promising for applications in spintronic devices.
We design a multiferroic metal that combines seemingly incompatible ferromagnetism, ferroelectricity, and metallicity by hole doping a two-dimensional (2D) ferroelectric with high density of states near the Fermi level. The strong magnetoelectric eff
Since the discovery of graphene, two-dimensional materials with atomic level thickness have rapidly grown to be a prosperous field of physical science with interdisciplinary interests, for their fascinating properties and broad applications. Very rec
We use high-resolution, tunable angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic properties of single crystals of MnBi2Te4, a material that was predicted to be the first intrin
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heter
The rare-earth nickelates are a rich playground for transport properties, known to host non-Fermi liquid character, resistance saturation and metal-insulator transitions. We report a study of transport in LaNiO3 in the presence of tunable disorder in