ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady state entanglement of distant nitrogen-vacancy centers in a coherent thermal magnon bath

89   0   0.0 ( 0 )
 نشر من قبل Emre K\\\"ose
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate steady-state entanglement (SSE) between two nitrogen-vacancy (NV) centers in distant nanodiamonds on an ultrathin Yttrium Iron Garnet (YIG) strip. We determine the dephasing and dissipative interactions of the qubits with the quanta of spin waves (magnon bath) in the YIG depending on the qubit positions on the strip. We show that the magnons dephasing effect can be eliminated, and we can transform the bath into a multimode displaced thermal state using external magnetic fields. Entanglement dynamics of the qubits in such a displaced thermal bath have been analyzed by deriving and solving the master equation. An additional electric field is considered to engineer the magnon dispersion relation at the band edge to control the Markovian character of the open system dynamics. We determine the optimum geometrical parameters of the system of distant qubits and the YIG strip to get SSE. Furthermore, parameter regimes for which the shared displaced magnon bath can sustain significant SSE against the local dephasing and decoherence of NV centers to their nuclear spin environments have been determined. Along with SSE, we investigate the steady-state coherence (SSC) and explain the physical mechanism of how delayed SSE appears following a rapid generation and sudden death of entanglement using the interplay of decoherence-free subspace states, system geometry, displacement of the thermal bath, and enhancement of the qubit dissipation near the magnon band edge. A non-monotonic relation between bath coherence and SSE is found, and critical coherence for maximum SSE is determined. Our results illuminate the efficient use of system geometry, band edge in bath spectrum, and reservoir coherence to engineer system-reservoir interactions for robust SSE and SSC.



قيم البحث

اقرأ أيضاً

Currently, thermally excited magnons are being intensively investigated owing to their potential in computing devices and thermoelectric conversion technologies. We report the detection of thermal magnon current propagating in a magnetic insulator yt trium iron garnet under a temperature gradient using a quantum sensor: electron spins associated with nitrogen-vacancy (NV) centers in diamond. Thermal magnon current was observed as modified Rabi oscillation frequencies of NV spins hosted in a beam-shaped bulk diamond that resonantly coupled with coherent magnon propagating over a long distance. Additionally, using a nanodiamond, alteration in NV spin relaxation rates depending on the applied temperature gradient were observed under a non-resonant NV excitation condition. The demonstration of probing thermal magnon current mediated by coherent magnon via NV spin states serves as a basis for creating a new device platform hybridizing spin caloritronics and spin qubits.
The conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers is demonstrated for centers created by ion implantation and annealing in high-purity diamond. Conversion occurs with surface exposure to an oxygen atmos phere at 465 C. The spectral properties of the charge-converted centers are investigated. Charge state control of nitrogen-vacancy centers close to the diamond surface is an important step toward the integration of these centers into devices for quantum information and magnetic sensing applications.
In this paper we study the time evolution of the entanglement between two remote NV Centers (nitrogen vacancy in diamond) connected by a dual-mode nanomechanical resonator with magnetic tips on both sides. Calculating the negativity as a measure for the entanglement, we find that the entanglement between two spins oscillates with time and can be manipulated by varying the parameters of the system. We observed the phe- nomenon of a sudden death and the periodic revivals of entanglement in time. For the study of quantum deco- herence, we implement a Lindblad master equation. In spite of its complexity, the model is analytically solvable under fairly reasonable assumptions, and shows that the decoherence influences the entanglement, the sudden death, and the revivals in time.
We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers (NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline environment that produces a varied density of NV centers, in cluding preferential orientation within some individual crystal grains, but preserves long spin coherence times. Using the native NVs as nanoscale sensors, we introduce a 3-dimensional strain imaging technique with high sensitivity ( $< 10^{-5}$ Hz$^{-1/2}$) and diffraction-limited resolution across a wide field of view.
Classical engines turn thermal resources into work, which is maximized for reversible operations. The quantum realm has expanded the range of useful operations beyond energy conversion, and incoherent resources beyond thermal reservoirs. This is the case of entanglement generation in a driven-dissipative protocol, which we hereby analyze as a continuous quantum machine. We show that for such machines the more irreversible the process the larger the concurrence. Maximal concurrence and entropy production are reached for the hot reservoir being at negative effective temperature, beating the limits set by classic thermal operations on an equivalent system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا