ترغب بنشر مسار تعليمي؟ اضغط هنا

Steady state entanglement beyond thermal limits

188   0   0.0 ( 0 )
 نشر من قبل Dario Gerace
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Classical engines turn thermal resources into work, which is maximized for reversible operations. The quantum realm has expanded the range of useful operations beyond energy conversion, and incoherent resources beyond thermal reservoirs. This is the case of entanglement generation in a driven-dissipative protocol, which we hereby analyze as a continuous quantum machine. We show that for such machines the more irreversible the process the larger the concurrence. Maximal concurrence and entropy production are reached for the hot reservoir being at negative effective temperature, beating the limits set by classic thermal operations on an equivalent system.



قيم البحث

اقرأ أيضاً

We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherenc e or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
We investigate steady-state entanglement (SSE) between two nitrogen-vacancy (NV) centers in distant nanodiamonds on an ultrathin Yttrium Iron Garnet (YIG) strip. We determine the dephasing and dissipative interactions of the qubits with the quanta of spin waves (magnon bath) in the YIG depending on the qubit positions on the strip. We show that the magnons dephasing effect can be eliminated, and we can transform the bath into a multimode displaced thermal state using external magnetic fields. Entanglement dynamics of the qubits in such a displaced thermal bath have been analyzed by deriving and solving the master equation. An additional electric field is considered to engineer the magnon dispersion relation at the band edge to control the Markovian character of the open system dynamics. We determine the optimum geometrical parameters of the system of distant qubits and the YIG strip to get SSE. Furthermore, parameter regimes for which the shared displaced magnon bath can sustain significant SSE against the local dephasing and decoherence of NV centers to their nuclear spin environments have been determined. Along with SSE, we investigate the steady-state coherence (SSC) and explain the physical mechanism of how delayed SSE appears following a rapid generation and sudden death of entanglement using the interplay of decoherence-free subspace states, system geometry, displacement of the thermal bath, and enhancement of the qubit dissipation near the magnon band edge. A non-monotonic relation between bath coherence and SSE is found, and critical coherence for maximum SSE is determined. Our results illuminate the efficient use of system geometry, band edge in bath spectrum, and reservoir coherence to engineer system-reservoir interactions for robust SSE and SSC.
We present a formalism to derive entanglement criteria beyond the Gaussian regime that can be readily tested by only homodyne detection. The measured observable is the Einstein-Podolsky-Rosen (EPR) correlation. Its arbitrary functional form enables u s to detect non-Gaussian entanglement even when an entanglement test based on second-order moments fails. We illustrate the power of our experimentally friendly criteria for a broad class of non-Gaussian states under realistic conditions. We also show rigorously that quantum teleportation for continuous variables employs a specific functional form of EPR correlation.
The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two statio nary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا