ﻻ يوجد ملخص باللغة العربية
We consider the Euler equations for the incompressible flow of an ideal fluid with an additional rough-in-time, divergence-free, Lie-advecting vector field. In recent work, we have demonstrated that this system arises from Clebsch and Hamilton-Pontryagin variational principles with a perturbative geometric rough path Lie-advection constraint. In this paper, we prove local well-posedness of the system in $L^2$-Sobolev spaces $H^m$ with integer regularity $mge lfloor d/2rfloor+2$ and establish a Beale-Kato-Majda (BKM) blow-up criterion in terms of the $L^1_tL^infty_x$-norm of the vorticity. In dimension two, we show that the $L^p$-norms of the vorticity are conserved, which yields global well-posedness and a Wong-Zakai approximation theorem for the stochastic version of the equation.
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes
We study a non-local hydrodynamic system with control. First we characterize the control dynamics as a sub-optimal approximation to the optimal control problem constrained to the evolution of the pressureless Euler alignment system. We then discuss t
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a
We study mixing and diffusion properties of passive scalars driven by $generic$ rough shear flows. Genericity is here understood in the sense of prevalence and (ir)regularity is measured in the Besov-Nikolskii scale $B^{alpha}_{1, infty}$, $alpha in
We consider the Euler equations in ${mathbb R}^3$ expressed in vorticity form. A classical question that goes back to Helmholtz is to describe the evolution of solutions with a high concentration around a curve. The work of Da Rios in 1906 states tha