ﻻ يوجد ملخص باللغة العربية
We study mixing and diffusion properties of passive scalars driven by $generic$ rough shear flows. Genericity is here understood in the sense of prevalence and (ir)regularity is measured in the Besov-Nikolskii scale $B^{alpha}_{1, infty}$, $alpha in (0, 1)$. We provide upper and lower bounds, showing that in general inviscid mixing in $H^{1/2}$ holds sharply with rate $r(t) sim t^{1/(2 alpha)}$, while enhanced dissipation holds with rate $r( u) sim u^{alpha / (alpha+2)}$. Our results in the inviscid mixing case rely on the concept of $rho$-irregularity, first introduced by Catellier and Gubinelli (Stoc. Proc. Appl. 126, 2016) and provide some new insights compared to the behavior predicted by Colombo, Coti Zelati and Widmayer (arXiv:2009.12268, 2020).
This article addresses mixing and diffusion properties of passive scalars advected by rough ($C^alpha$) shear flows. We show that in general, one cannot expect a rough shear flow to increase the rate of inviscid mixing to more than that of a smooth s
We consider barotropic instability of shear flows for incompressible fluids with Coriolis effects. For a class of shear flows, we develop a new method to find the sharp stability conditions. We study the flow with Sinus profile in details and obtain
First, we consider Kolmogorov flow (a shear flow with a sinusoidal velocity profile) for 2D Navier-Stokes equation on a torus. Such flows, also called bar states, have been numerically observed as one type of metastable states in the study of 2D turb
We consider the Euler equations for the incompressible flow of an ideal fluid with an additional rough-in-time, divergence-free, Lie-advecting vector field. In recent work, we have demonstrated that this system arises from Clebsch and Hamilton-Pontry
A new paradigm recently emerged in financial modelling: rough (stochastic) volatility, first observed by Gatheral et al. in high-frequency data, subsequently derived within market microstructure models, also turned out to capture parsimoniously key s