ﻻ يوجد ملخص باللغة العربية
We consider the Euler equations in ${mathbb R}^3$ expressed in vorticity form. A classical question that goes back to Helmholtz is to describe the evolution of solutions with a high concentration around a curve. The work of Da Rios in 1906 states that such a curve must evolve by the so-called binormal curvature flow. Existence of true solutions concentrated near a given curve that evolves by this law is a long-standing open question that has only been answered for the special case of a circle travelling with constant speed along its axis, the thin vortex-rings. We provide what appears to be the first rigorous construction of {em helical filaments}, associated to a translating-rotating helix. The solution is defined at all times and does not change form with time. The result generalizes to multiple similar helical filaments travelling and rotating together.
In this paper, we study desingularization of vortices for the two-dimensional incompressible Euler equations in the full plane. We construct a family of steady vortex pairs for the Euler equations with a general vorticity function, which constitutes
Onsager conjectured that weak solutions of the Euler equations for incompressible fluids in 3D conserve energy only if they have a certain minimal smoothness, (of order of 1/3 fractional derivatives) and that they dissipate energy if they are rougher
We construct co-rotating and traveling vortex sheets for 2D incompressible Euler equation, which are supported on several small closed curves. These examples represent a new type of vortex sheet solutions other than two known classes. The constructio
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a
In this paper, we study nonlinear desingularization of steady vortex rings of three-dimensional incompressible Euler flows. We construct a family of steady vortex rings (with and without swirl) which constitutes a desingularization of the classical c