ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the problem of prescribing Webster scalar curvatures on compact pseudo-Hermitian manifolds. In terms of the method of upper and lower solutions and the perturbation theory of self-adjoint operators, we can describe some sets of Webster scalar curvature functions which can be realized through pointwise CR conformal deformations and CR conformally equivalent deformations respectively from a given pseudo-Hermitian structure.
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of E
Based on uniform CR Sobolev inequality and Moser iteration, this paper investigates the convergence of closed pseudo-Hermitian manifolds. In terms of the subelliptic inequality, the set of closed normalized pseudo-Einstein manifolds with some uniform
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds. These maps include the emph{CR} maps and the transversally holomorphic maps. In terms of some sub-Laplacian or Hessian type Bochner formulas, and compari
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds. By Bochner formulas and comparison theorems, we establish related Schwarz type results. As corollaries, Liouville theorem and lit
In this paper, we will give a horizontal gradient estimate of positive solutions of $Delta_b u = - lambda u$ on complete noncompact pseudo-Hermitian manifolds. As a consequence, we recapture the Liouville theorem of positive pseudo-harmonic functions