ترغب بنشر مسار تعليمي؟ اضغط هنا

Horizontal Gradient Estimate of Positive Pseudo-Harmonic Functions on Complete Noncompact Pseudo-Hermitian Manifolds

159   0   0.0 ( 0 )
 نشر من قبل Yibin Ren
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Yibin Ren




اسأل ChatGPT حول البحث

In this paper, we will give a horizontal gradient estimate of positive solutions of $Delta_b u = - lambda u$ on complete noncompact pseudo-Hermitian manifolds. As a consequence, we recapture the Liouville theorem of positive pseudo-harmonic functions on Sasakian manifolds with nonnegative pseudo-Hermitian Ricci curvature.



قيم البحث

اقرأ أيضاً

In this paper, we give an estimate of sub-Laplacian of Riemannian distance functions in pseudo-Hermitian geometry which plays a similar role as Laplacian comparison theorem in Riemannian geometry, and deduce a prior horizontal gradient estimate of ps eudo-harmonic maps from pseudo-Hermitian manifolds to regular balls of Riemannian manifolds. As an application, Liouville theorem is established under the conditions of nonnegative pseudo-Hermitian Ricci curvature and vanishing pseudo-Hermitian torsion. Moreover, we obtain the existence of pseudo-harmonic maps from complete noncompact pseudo-Hermitian manifolds to regular balls of Riemannian manifolds.
126 - Yibin Ren , Guilin Yang 2017
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of E ells-Sampsons existence theorem. We also discuss the uniqueness of the pseudo-harmonic representative of its homotopy class which is a generalization of Hartman theorem, provided that the target manifold has negative sectional curvature.
Based on uniform CR Sobolev inequality and Moser iteration, this paper investigates the convergence of closed pseudo-Hermitian manifolds. In terms of the subelliptic inequality, the set of closed normalized pseudo-Einstein manifolds with some uniform geometric conditions is compact. Moreover, the set of closed normalized Sasakian $eta$-Einstein $(2n+1)$-manifolds with Carnot-Caratheodory distance bounded from above, volume bounded from below and $L^{n + frac{1}{2}}$ norm of pseudo-Hermitian curvature bounded is $C^infty$ compact. As an application, we will deduce some pointed convergence of complete Kahler cones with Sasakian manifolds as their links.
183 - R. M. Friswell , C. M. Wood 2015
The theory of harmonic vector fields on Riemannian manifolds is generalised to pseudo-Riemannian manifolds. Harmonic conformal gradient fields on pseudo-Euclidean hyperquadrics are classified up to congruence, as are harmonic Killing fields on pseudo -Riemannian quadrics. A para-Kaehler twisted anti-isometry is used to correlate harmonic vector fields on the quadrics of neutral signature.
109 - Yuxin Dong , Yibin Ren , Weike Yu 2021
In this paper, we investigate the problem of prescribing Webster scalar curvatures on compact pseudo-Hermitian manifolds. In terms of the method of upper and lower solutions and the perturbation theory of self-adjoint operators, we can describe some sets of Webster scalar curvature functions which can be realized through pointwise CR conformal deformations and CR conformally equivalent deformations respectively from a given pseudo-Hermitian structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا