ﻻ يوجد ملخص باللغة العربية
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds. By Bochner formulas and comparison theorems, we establish related Schwarz type results. As corollaries, Liouville theorem and little Picard theorem for basic CR functions are deduced. Finally, we study CR Caratheodory pseudodistance on CR manifolds.
In this paper, we consider some generalized holomorphic maps between pseudo-Hermitian manifolds. These maps include the emph{CR} maps and the transversally holomorphic maps. In terms of some sub-Laplacian or Hessian type Bochner formulas, and compari
In this paper, we derive the second variation formula of pseudoharmonic maps into any pseudo-Hermitian manifolds. When the target manifold is an isometric embedded CR manifold in complex Euclidean space or a pseudo-Hermitian immersed submanifold in H
In this paper, we discuss the heat flow of a pseudo-harmonic map from a closed pseudo-Hermitian manifold to a Riemannian manifold with non-positive sectional curvature, and prove the existence of the pseudo-harmonic map which is a generalization of E
In this paper, we study a special exhaustion function on almost Hermitian manifolds and establish the existence result by using the Hessian comparison theorem. From the viewpoint of the exhaustion function, we establish related Schwarz type lemmas fo
In this paper, we establish a generalized maximum principle for pseudo-Hermitian manifolds. As corollaries, Omori-Yau type maximum principles for pseudo-Hermitian manifolds are deduced. Moreover, we prove that the stochastic completeness for the heat