ﻻ يوجد ملخص باللغة العربية
The ultimate control of magnetic states of matter at femtosecond (or even faster) timescales defines one of the most pursued paradigm shifts for future information technology. In this context, ultrafast laser pulses developed into extremely valuable stimuli for the all-optical magnetisation reversal in ferrimagnetic and ferromagnetic alloys and multilayers, while this remains elusive in elementary ferromagnets. Here we demonstrate that a single laser pulse with sub-picosecond duration can lead to the reversal of the magnetisation of bulk nickel, in tandem with the expected demagnetisation. As revealed by realistic time-dependent electronic structure simulations, the central mechanism is ultrafast light-induced torques acting on the magnetisation, which are only effective if the laser pulse is circularly polarised on a plane that contains the initial orientation of the magnetisation. We map the laser pulse parameter space enabling the magnetisation switching and unveil rich intra-atomic orbital-dependent magnetisation dynamics featuring transient inter-orbital non-collinear states. Our findings open further perspectives for the efficient implementation of optically-based spintronic devices.
An ultrafast spin current can be induced by femtosecond laser excitation in a ferromagnetic (FM) thin film in contact with a nonmagnetic (NM) metal. The propagation of an ultrafast spin current into NM metal has recently been found in experiments to
We report an electric-field poling study of the geometric-driven improper ferroelectric h-ErMnO$_3$. From a detailed dielectric analysis we deduce the temperature and frequency dependent range for which single-crystalline h-ErMnO$_3$ exhibits purely
Spin-crossover (SCO) molecules are versatile magnetic switches with applications in molecular electronics and spintronics. Downscaling devices to the single-molecule level remains, however, a challenging task since the switching mechanism in bulk is
We present results of wavelength-dependent ultrafast pump-probe experiments on micelle-suspended single-walled carbon nanotubes. The linear absorption and photoluminescence spectra of the samples show a number of chirality-dependent peaks, and conseq
We report on the switching of the magnetic vortex core in a Pac-man disk using a magnetic field pulse, investigated via micromagnetic simulations. The minimum core switching field is reduced by 72 % compared to that of a circular disk with the same d