ﻻ يوجد ملخص باللغة العربية
We report on the switching of the magnetic vortex core in a Pac-man disk using a magnetic field pulse, investigated via micromagnetic simulations. The minimum core switching field is reduced by 72 % compared to that of a circular disk with the same diameter and thickness. However, the core switches irregularly with respect to both the field pulse amplitude and duration. This irregularity is induced by magnetization oscillations which arise due to excitation of the spin waves when the core annihilates. We show that the core switching can be controlled with the assist magnetic field and by changing the waveform.
In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a si
A magnetic vortex is a curling magnetic structure realized in a ferromagnetic disk, which is a promising candidate of a memory cell for future nonvolatile data storage devices. Thus, understanding of the stability and dynamical behaviour of the magne
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to
Vortex core polarity switching in NiFe disks has been evidenced using an all-electrical rectification scheme. Both simulation and experiments yield a consistent loss of the rectified signal when driving the core at high powers near its gyrotropic res
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray