ﻻ يوجد ملخص باللغة العربية
The thermodynamic limit of photovoltaic efficiency for a single-junction solar cell can be readily predicted using the bandgap of the active light absorbing material. Such an approach overlooks the energy loss due to non-radiative electron-hole processes. We propose a practical ab initio procedure to determine the maximum efficiency of a thin-film solar cell that takes into account both radiative and non-radiative recombination. The required input includes the frequency-dependent optical absorption coefficient, as well as the capture cross-sections and equilibrium populations of point defects. For kesterite-structured Cu$_2$ZnSnS$_4$, the radiative limit is reached for a film thickness of around 2.6 micrometer, where the efficiency gain due to light absorption is counterbalanced by losses due to the increase in recombination current.
Transition metal dichalcogenide (TMD) materials have emerged as promising candidates for thin film solar cells due to their wide bandgap range across the visible wavelengths, high absorption coefficient and ease of integration with both arbitrary sub
The intermediate band solar cell (IBSC) and quantum ratchet solar cell (QRSC) have the potential to surpass the efficiency of standard single-junction solar cells by allowing sub-gap photon absorption through states deep inside the band gap. High eff
The Shockley-Queisser (SQ) limit provides a convenient metric for predicting light-to-electricity conversion efficiency of a solar cell based on the band gap of the light-absorbing layer. In reality, few materials approach this radiative limit. We de
Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. The key is to find an appropriate molecular agent to prepare a stable solution and optimize th
Various thin-film I$_2$-II-IV-VI$_4$ photovoltaic absorbers derived from kesterite Cu$_2$ZnSn(S,Se)$_4$ have been synthesized, characterized, and theoretically investigated in the past few years. The availability of this homogeneous materials dataset