ﻻ يوجد ملخص باللغة العربية
We generate experimentally a honeycomb refractive index pattern in an atomic vapor cell using electromagnetically-induced transparency. We study experimentally and theoretically the propagation of polarized light beams in such photonic graphene. We demonstrate that an effective spin-orbit coupling appears as a correction to the paraxial beam equations because of the strong spatial gradients of the permittivity. It leads to the coupling of spin and angular momentum at the Dirac points of the graphene lattice. Our results suggest that the polarization degree plays an important role in many configurations where it has been previously neglected.
The concept of gauge fields plays a significant role in many areas of physics from particle physics and cosmology to condensed matter systems, where gauge potentials are a natural consequence of electromagnetic fields acting on charged particles and
We analyze the couplings between spins and phonons in graphene. We present a complete analysis of the possible couplings between spins and flexural, out of plane, vibrations. From tight-binding models we obtain analytical and numerical estimates of t
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this corr
We study the effect of anisotropy of the Rashba coupling on the extrinsic spin Hall effect due to spin-orbit active adatoms on graphene. In addition to the intrinsic spin-orbit coupling, a generalized anisotropic Rashba coupling arising from the brea
We consider theoretically the influence of crystalline fields on the electronic structure of graphene placed on a layered material with reduced symmetry and large spin-orbit coupling (SOC). We use a perturbative procedure combined with the Slater-Kos