ترغب بنشر مسار تعليمي؟ اضغط هنا

Adapting ImageNet-scale models to complex distribution shifts with self-learning

96   0   0.0 ( 0 )
 نشر من قبل Steffen Schneider
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While self-learning methods are an important component in many recent domain adaptation techniques, they are not yet comprehensively evaluated on ImageNet-scale datasets common in robustness research. In extensive experiments on ResNet and EfficientNet models, we find that three components are crucial for increasing performance with self-learning: (i) using short update times between the teacher and the student network, (ii) fine-tuning only few affine parameters distributed across the network, and (iii) leveraging methods from robust classification to counteract the effect of label noise. We use these insights to obtain drastically improved state-of-the-art results on ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error). Our techniques yield further improvements in combination with previously proposed robustification methods. Self-learning is able to reduce the top-1 error to a point where no substantial further progress can be expected. We therefore re-purpose the dataset from the Visual Domain Adaptation Challenge 2019 and use a subset of it as a new robustness benchmark (ImageNet-D) which proves to be a more challenging dataset for all current state-of-the-art models (58.2% error) to guide future research efforts at the intersection of robustness and domain adaptation on ImageNet scale.

قيم البحث

اقرأ أيضاً

Images seen during test time are often not from the same distribution as images used for learning. This problem, known as domain shift, occurs when training classifiers from object-centric internet image databases and trying to apply them directly to scene understanding tasks. The consequence is often severe performance degradation and is one of the major barriers for the application of classifiers in real-world systems. In this paper, we show how to learn transform-based domain adaptation classifiers in a scalable manner. The key idea is to exploit an implicit rank constraint, originated from a max-margin domain adaptation formulation, to make optimization tractable. Experiments show that the transformation between domains can be very efficiently learned from data and easily applied to new categories. This begins to bridge the gap between large-scale internet image collections and object images captured in everyday life environments.
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models inability to generalize to slightly harder images than those found in the original test sets.
Transfer learning is a widely-used paradigm in deep learning, where models pre-trained on standard datasets can be efficiently adapted to downstream tasks. Typically, better pre-trained models yield better transfer results, suggesting that initial ac curacy is a key aspect of transfer learning performance. In this work, we identify another such aspect: we find that adversarially robust models, while less accurate, often perform better than their standard-trained counterparts when used for transfer learning. Specifically, we focus on adversarially robust ImageNet classifiers, and show that they yield improved accuracy on a standard suite of downstream classification tasks. Further analysis uncovers more differences between robust and standard models in the context of transfer learning. Our results are consistent with (and in fact, add to) recent hypotheses stating that robustness leads to improved feature representations. Our code and models are available at https://github.com/Microsoft/robust-models-transfer .
We consider the problem of online learning in the presence of sudden distribution shifts as frequently encountered in applications such as autonomous navigation. Distribution shifts require constant performance monitoring and re-training. They may al so be hard to detect and can lead to a slow but steady degradation in model performance. To address this problem we propose a new Bayesian meta-algorithm that can both (i) make inferences about subtle distribution shifts based on minimal sequential observations and (ii) accordingly adapt a model in an online fashion. The approach uses beam search over multiple change point hypotheses to perform inference on a hierarchical sequential latent variable modeling framework. Our proposed approach is model-agnostic, applicable to both supervised and unsupervised learning, and yields significant improvements over state-of-the-art Bayesian online learning approaches.
Yes, and no. We ask whether recent progress on the ImageNet classification benchmark continues to represent meaningful generalization, or whether the community has started to overfit to the idiosyncrasies of its labeling procedure. We therefore devel op a significantly more robust procedure for collecting human annotations of the ImageNet validation set. Using these new labels, we reassess the accuracy of recently proposed ImageNet classifiers, and find their gains to be substantially smaller than those reported on the original labels. Furthermore, we find the original ImageNet labels to no longer be the best predictors of this independently-collected set, indicating that their usefulness in evaluating vision models may be nearing an end. Nevertheless, we find our annotation procedure to have largely remedied the errors in the original labels, reinforcing ImageNet as a powerful benchmark for future research in visual recognition.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا