ترغب بنشر مسار تعليمي؟ اضغط هنا

Do Adversarially Robust ImageNet Models Transfer Better?

144   0   0.0 ( 0 )
 نشر من قبل Andrew Ilyas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning is a widely-used paradigm in deep learning, where models pre-trained on standard datasets can be efficiently adapted to downstream tasks. Typically, better pre-trained models yield better transfer results, suggesting that initial accuracy is a key aspect of transfer learning performance. In this work, we identify another such aspect: we find that adversarially robust models, while less accurate, often perform better than their standard-trained counterparts when used for transfer learning. Specifically, we focus on adversarially robust ImageNet classifiers, and show that they yield improved accuracy on a standard suite of downstream classification tasks. Further analysis uncovers more differences between robust and standard models in the context of transfer learning. Our results are consistent with (and in fact, add to) recent hypotheses stating that robustness leads to improved feature representations. Our code and models are available at https://github.com/Microsoft/robust-models-transfer .



قيم البحث

اقرأ أيضاً

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models inability to generalize to slightly harder images than those found in the original test sets.
Transfer learning, in which a network is trained on one task and re-purposed on another, is often used to produce neural network classifiers when data is scarce or full-scale training is too costly. When the goal is to produce a model that is not onl y accurate but also adversarially robust, data scarcity and computational limitations become even more cumbersome. We consider robust transfer learning, in which we transfer not only performance but also robustness from a source model to a target domain. We start by observing that robust networks contain robust feature extractors. By training classifiers on top of these feature extractors, we produce new models that inherit the robustness of their parent networks. We then consider the case of fine tuning a network by re-training end-to-end in the target domain. When using lifelong learning strategies, this process preserves the robustness of the source network while achieving high accuracy. By using such strategies, it is possible to produce accurate and robust models with little data, and without the cost of adversarial training. Additionally, we can improve the generalization of adversarially trained models, while maintaining their robustness.
When designing a neural caption generator, a convolutional neural network can be used to extract image features. Is it possible to also use a neural language model to extract sentence prefix features? We answer this question by trying different ways to transfer the recurrent neural network and embedding layer from a neural language model to an image caption generator. We find that image caption generators with transferred parameters perform better than those trained from scratch, even when simply pre-training them on the text of the same captions dataset it will later be trained on. We also find that the best language models (in terms of perplexity) do not result in the best caption generators after transfer learning.
We propose the adversarially robust kernel smoothing (ARKS) algorithm, combining kernel smoothing, robust optimization, and adversarial training for robust learning. Our methods are motivated by the convex analysis perspective of distributionally rob ust optimization based on probability metrics, such as the Wasserstein distance and the maximum mean discrepancy. We adapt the integral operator using supremal convolution in convex analysis to form a novel function majorant used for enforcing robustness. Our method is simple in form and applies to general loss functions and machine learning models. Furthermore, we report experiments with general machine learning models, such as deep neural networks, to demonstrate that ARKS performs competitively with the state-of-the-art methods based on the Wasserstein distance.
Adversarial training (AT) has been demonstrated as one of the most promising defense methods against various adversarial attacks. To our knowledge, existing AT-based methods usually train with the locally most adversarial perturbed points and treat a ll the perturbed points equally, which may lead to considerably weaker adversarial robust generalization on test data. In this work, we introduce a new adversarial training framework that considers the diversity as well as characteristics of the perturbed points in the vicinity of benign samples. To realize the framework, we propose a Regional Adversarial Training (RAT) defense method that first utilizes the attack path generated by the typical iterative attack method of projected gradient descent (PGD), and constructs an adversarial region based on the attack path. Then, RAT samples diverse perturbed training points efficiently inside this region, and utilizes a distance-aware label smoothing mechanism to capture our intuition that perturbed points at different locations should have different impact on the model performance. Extensive experiments on several benchmark datasets show that RAT consistently makes significant improvement on standard adversarial training (SAT), and exhibits better robust generalization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا