ﻻ يوجد ملخص باللغة العربية
Engraving trenches on the surfaces of ultrathin ferroelectric (FE) films and superlattices promises control over the orientation and direction of FE domain walls (DWs). Through exploiting the phenomenon of DW-surface trench (ST) parallel alignment, systems where DWs are known for becoming electrical conductors could now become useful nanocircuits using only standard lithographical techniques. Despite this clear application, the microscopic mechanism responsible for the alignment phenomenon has remained elusive. Using ultrathin PbTiO$_3$ films as a model system, we explore this mechanism with large scale density functional theory simulations on as many as 5,136 atoms. Although we expect multiple contributing factors, we show that parallel DW-ST alignment can be well explained by this configuration giving rise to an arrangement of electric dipole moments which best restore polar continuity to the film. These moments preserve the polar texture of the pristine film, thus minimizing ST-induced depolarizing fields. Our simulations also support experimental observations of ST-induced negative strains which have been suggested to play a role in the alignment mechanism.
Although enhanced conductivity at ferroelectric domain boundaries has been found in BiFeO$_3$ films, Pb(Zr,Ti)O$_3$ films, and hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using
Mechanical restoring forces acting on ferroelastic domain walls displaced from the equilibrium positions in epitaxial films are calculated for various modes of their cooperative translational oscillations. For vibrations of the domain-wall superlatti
Modulating the polarization of a beam of quantum particles is a powerful method to tailor the macroscopic properties of the ensuing energy flux as it directly influences the way in which its quantum constituents interact with other particles, waves o
Deterministic polarization reversal in ferroelectric and multiferroic films is critical for their exploitation in nanoelectronic devices. While ferroelectricity has been studied for nearly a century, major discrepancies in the reported values of coer
Against expectations, robust switchable ferroelectricity has been recently observed in ultrathin (1 nm) ferroelectric films exposed to air [V. Garcia $et$ $al.$, Nature {bf 460}, 81 (2009)]. Based on first-principles calculations, we show that the sy