ﻻ يوجد ملخص باللغة العربية
We review the results on the cycle classes of the strata defined by the height and the Artin invariant on the moduli of K3 surfaces in positive characteristic obtained in joint work with Katsura and Ekedahl. In addition we prove a new irreducibility result for these strata.
We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $ell$-adic and crystalline coh
Let $F$ be a moduli space of lattice-polarized K3 surfaces. Suppose that one has chosen a canonical effective ample divisor $R$ on a general K3 in $F$. We call this divisor recognizable if its flat limit on Kulikov surfaces is well defined. We prove
We study how the degrees of irrationality of moduli spaces of polarized K3 surfaces grow with respect to the genus. We prove that the growth is bounded by a polynomial function of degree $14+varepsilon$ for any $varepsilon>0$ and, for three sets of i
We give a notion of ordinary Enriques surfaces and their canonical lifts in any positive characteristic, and we prove Torelli-type results for this class of Enriques surfaces.
We show that the K-moduli spaces of log Fano pairs $(mathbb{P}^1timesmathbb{P}^1, cC)$ where $C$ is a $(4,4)$-curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ complete intersection curves in $mathbb{P}^3$. This, together wit