ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantization of Deep Neural Networks for Accurate EdgeComputing

85   0   0.0 ( 0 )
 نشر من قبل Xiaowei Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have demonstrated their great potential in recent years, exceeding the per-formance of human experts in a wide range of applications. Due to their large sizes, however, compressiontechniques such as weight quantization and pruning are usually applied before they can be accommodated onthe edge. It is generally believed that quantization leads to performance degradation, and plenty of existingworks have explored quantization strategies aiming at minimum accuracy loss. In this paper, we argue thatquantization, which essentially imposes regularization on weight representations, can sometimes help toimprove accuracy. We conduct comprehensive experiments on three widely used applications: fully con-nected network (FCN) for biomedical image segmentation, convolutional neural network (CNN) for imageclassification on ImageNet, and recurrent neural network (RNN) for automatic speech recognition, and experi-mental results show that quantization can improve the accuracy by 1%, 1.95%, 4.23% on the three applicationsrespectively with 3.5x-6.4x memory reduction.



قيم البحث

اقرأ أيضاً

Low-bit deep neural networks (DNNs) become critical for embedded applications due to their low storage requirement and computing efficiency. However, they suffer much from the non-negligible accuracy drop. This paper proposes the stochastic quantizat ion (SQ) algorithm for learning accurate low-bit DNNs. The motivation is due to the following observation. Existing training algorithms approximate the real-valued elements/filters with low-bit representation all together in each iteration. The quantization errors may be small for some elements/filters, while are remarkable for others, which lead to inappropriate gradient direction during training, and thus bring notable accuracy drop. Instead, SQ quantizes a portion of elements/filters to low-bit with a stochastic probability inversely proportional to the quantization error, while keeping the other portion unchanged with full-precision. The quantized and full-precision portions are updated with corresponding gradients separately in each iteration. The SQ ratio is gradually increased until the whole network is quantized. This procedure can greatly compensate the quantization error and thus yield better accuracy for low-bit DNNs. Experiments show that SQ can consistently and significantly improve the accuracy for different low-bit DNNs on various datasets and various network structures.
241 - Cheng Gong , Ye Lu , Kunpeng Xie 2021
Quantization has been proven to be a vital method for improving the inference efficiency of deep neural networks (DNNs). However, it is still challenging to strike a good balance between accuracy and efficiency while quantizing DNN weights or activat ion values from high-precision formats to their quantized counterparts. We propose a new method called elastic significant bit quantization (ESB) that controls the number of significant bits of quantized values to obtain better inference accuracy with fewer resources. We design a unified mathematical formula to constrain the quantized values of the ESB with a flexible number of significant bits. We also introduce a distribution difference aligner (DDA) to quantitatively align the distributions between the full-precision weight or activation values and quantized values. Consequently, ESB is suitable for various bell-shaped distributions of weights and activation of DNNs, thus maintaining a high inference accuracy. Benefitting from fewer significant bits of quantized values, ESB can reduce the multiplication complexity. We implement ESB as an accelerator and quantitatively evaluate its efficiency on FPGAs. Extensive experimental results illustrate that ESB quantization consistently outperforms state-of-the-art methods and achieves average accuracy improvements of 4.78%, 1.92%, and 3.56% over AlexNet, ResNet18, and MobileNetV2, respectively. Furthermore, ESB as an accelerator can achieve 10.95 GOPS peak performance of 1k LUTs without DSPs on the Xilinx ZCU102 FPGA platform. Compared with CPU, GPU, and state-of-the-art accelerators on FPGAs, the ESB accelerator can improve the energy efficiency by up to 65x, 11x, and 26x, respectively.
85 - Xiaowei Xu , Qing Lu , Yu Hu 2018
With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagno- sis, and medical intervention. Since manual anno- tation su ers limited reproducibility, ardu ous e orts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural networks (DNNs), par- ticularly fully convolutional networks (FCNs), have been widely applied to biomedical image segmenta- tion, attaining much improved performance. At the same time, quantization of DNNs has become an ac- tive research topic, which aims to represent weights with less memory (precision) to considerably reduce memory and computation requirements of DNNs while maintaining acceptable accuracy. In this paper, we apply quantization techniques to FCNs for accurate biomedical image segmentation. Unlike existing litera- ture on quantization which primarily targets memory and computation complexity reduction, we apply quan- tization as a method to reduce over tting in FCNs for better accuracy. Speci cally, we focus on a state-of- the-art segmentation framework, suggestive annotation [22], which judiciously extracts representative annota- tion samples from the original training dataset, obtain- ing an e ective small-sized balanced training dataset. We develop two new quantization processes for this framework: (1) suggestive annotation with quantiza- tion for highly representative training samples, and (2) network training with quantization for high accuracy. Extensive experiments on the MICCAI Gland dataset show that both quantization processes can improve the segmentation performance, and our proposed method exceeds the current state-of-the-art performance by up to 1%. In addition, our method has a reduction of up to 6.4x on memory usage.
Deep neural networks (DNNs) have achieved great success in a wide range of computer vision areas, but the applications to mobile devices is limited due to their high storage and computational cost. Much efforts have been devoted to compress DNNs. In this paper, we propose a simple yet effective method for deep networks compression, named Cluster Regularized Quantization (CRQ), which can reduce the presentation precision of a full-precision model to ternary values without significant accuracy drop. In particular, the proposed method aims at reducing the quantization error by introducing a cluster regularization term, which is imposed on the full-precision weights to enable them naturally concentrate around the target values. Through explicitly regularizing the weights during the re-training stage, the full-precision model can achieve the smooth transition to the low-bit one. Comprehensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method.
79 - Shicong Liu , Hongtao Lu 2016
Recent advance of large scale similarity search involves using deeply learned representations to improve the search accuracy and use vector quantization methods to increase the search speed. However, how to learn deep representations that strongly pr eserve similarities between data pairs and can be accurately quantized via vector quantization remains a challenging task. Existing methods simply leverage quantization loss and similarity loss, which result in unexpectedly biased back-propagating gradients and affect the search performances. To this end, we propose a novel gradient snapping layer (GSL) to directly regularize the back-propagating gradient towards a neighboring codeword, the generated gradients are un-biased for reducing similarity loss and also propel the learned representations to be accurately quantized. Joint deep representation and vector quantization learning can be easily performed by alternatively optimize the quantization codebook and the deep neural network. The proposed framework is compatible with various existing vector quantization approaches. Experimental results demonstrate that the proposed framework is effective, flexible and outperforms the state-of-the-art large scale similarity search methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا