ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Accurate Low-Bit Deep Neural Networks with Stochastic Quantization

95   0   0.0 ( 0 )
 نشر من قبل Yinpeng Dong
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-bit deep neural networks (DNNs) become critical for embedded applications due to their low storage requirement and computing efficiency. However, they suffer much from the non-negligible accuracy drop. This paper proposes the stochastic quantization (SQ) algorithm for learning accurate low-bit DNNs. The motivation is due to the following observation. Existing training algorithms approximate the real-valued elements/filters with low-bit representation all together in each iteration. The quantization errors may be small for some elements/filters, while are remarkable for others, which lead to inappropriate gradient direction during training, and thus bring notable accuracy drop. Instead, SQ quantizes a portion of elements/filters to low-bit with a stochastic probability inversely proportional to the quantization error, while keeping the other portion unchanged with full-precision. The quantized and full-precision portions are updated with corresponding gradients separately in each iteration. The SQ ratio is gradually increased until the whole network is quantized. This procedure can greatly compensate the quantization error and thus yield better accuracy for low-bit DNNs. Experiments show that SQ can consistently and significantly improve the accuracy for different low-bit DNNs on various datasets and various network structures.



قيم البحث

اقرأ أيضاً

Network quantization, which aims to reduce the bit-lengths of the network weights and activations, has emerged as one of the key ingredients to reduce the size of neural networks for their deployments to resource-limited devices. In order to overcome the nature of transforming continuous activations and weights to discrete ones, recent study called Relaxed Quantization (RQ) [Louizos et al. 2019] successfully employ the popular Gumbel-Softmax that allows this transformation with efficient gradient-based optimization. However, RQ with this Gumbel-Softmax relaxation still suffers from bias-variance trade-off depending on the temperature parameter of Gumbel-Softmax. To resolve the issue, we propose a novel method, Semi-Relaxed Quantization (SRQ) that uses multi-class straight-through estimator to effectively reduce the bias and variance, along with a new regularization technique, DropBits that replaces dropout regularization to randomly drop the bits instead of neurons to further reduce the bias of the multi-class straight-through estimator in SRQ. As a natural extension of DropBits, we further introduce the way of learning heterogeneous quantization levels to find proper bit-length for each layer using DropBits. We experimentally validate our method on various benchmark datasets and network architectures, and also support the quantized lottery ticket hypothesis: learning heterogeneous quantization levels outperforms the case using the same but fixed quantization levels from scratch.
Deep neural networks (DNNs) have demonstrated their great potential in recent years, exceeding the per-formance of human experts in a wide range of applications. Due to their large sizes, however, compressiontechniques such as weight quantization and pruning are usually applied before they can be accommodated onthe edge. It is generally believed that quantization leads to performance degradation, and plenty of existingworks have explored quantization strategies aiming at minimum accuracy loss. In this paper, we argue thatquantization, which essentially imposes regularization on weight representations, can sometimes help toimprove accuracy. We conduct comprehensive experiments on three widely used applications: fully con-nected network (FCN) for biomedical image segmentation, convolutional neural network (CNN) for imageclassification on ImageNet, and recurrent neural network (RNN) for automatic speech recognition, and experi-mental results show that quantization can improve the accuracy by 1%, 1.95%, 4.23% on the three applicationsrespectively with 3.5x-6.4x memory reduction.
241 - Cheng Gong , Ye Lu , Kunpeng Xie 2021
Quantization has been proven to be a vital method for improving the inference efficiency of deep neural networks (DNNs). However, it is still challenging to strike a good balance between accuracy and efficiency while quantizing DNN weights or activat ion values from high-precision formats to their quantized counterparts. We propose a new method called elastic significant bit quantization (ESB) that controls the number of significant bits of quantized values to obtain better inference accuracy with fewer resources. We design a unified mathematical formula to constrain the quantized values of the ESB with a flexible number of significant bits. We also introduce a distribution difference aligner (DDA) to quantitatively align the distributions between the full-precision weight or activation values and quantized values. Consequently, ESB is suitable for various bell-shaped distributions of weights and activation of DNNs, thus maintaining a high inference accuracy. Benefitting from fewer significant bits of quantized values, ESB can reduce the multiplication complexity. We implement ESB as an accelerator and quantitatively evaluate its efficiency on FPGAs. Extensive experimental results illustrate that ESB quantization consistently outperforms state-of-the-art methods and achieves average accuracy improvements of 4.78%, 1.92%, and 3.56% over AlexNet, ResNet18, and MobileNetV2, respectively. Furthermore, ESB as an accelerator can achieve 10.95 GOPS peak performance of 1k LUTs without DSPs on the Xilinx ZCU102 FPGA platform. Compared with CPU, GPU, and state-of-the-art accelerators on FPGAs, the ESB accelerator can improve the energy efficiency by up to 65x, 11x, and 26x, respectively.
In this paper, we address the problem of reducing the memory footprint of convolutional network architectures. We introduce a vector quantization method that aims at preserving the quality of the reconstruction of the network outputs rather than its weights. The principle of our approach is that it minimizes the loss reconstruction error for in-domain inputs. Our method only requires a set of unlabelled data at quantization time and allows for efficient inference on CPU by using byte-aligned codebooks to store the compressed weights. We validate our approach by quantizing a high performing ResNet-50 model to a memory size of 5MB (20x compression factor) while preserving a top-1 accuracy of 76.1% on ImageNet object classification and by compressing a Mask R-CNN with a 26x factor.
Quantized neural networks with low-bit weights and activations are attractive for developing AI accelerators. However, the quantization functions used in most conventional quantization methods are non-differentiable, which increases the optimization difficulty of quantized networks. Compared with full-precision parameters (i.e., 32-bit floating numbers), low-bit values are selected from a much smaller set. For example, there are only 16 possibilities in 4-bit space. Thus, we present to regard the discrete weights in an arbitrary quantized neural network as searchable variables, and utilize a differential method to search them accurately. In particular, each weight is represented as a probability distribution over the discrete value set. The probabilities are optimized during training and the values with the highest probability are selected to establish the desired quantized network. Experimental results on benchmarks demonstrate that the proposed method is able to produce quantized neural networks with higher performance over the state-of-the-art methods on both image classification and super-resolution tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا