ترغب بنشر مسار تعليمي؟ اضغط هنا

A Case for Fine-grain Coherence Specialization in Heterogeneous Systems

71   0   0.0 ( 0 )
 نشر من قبل Johnathan Alsop
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Hardware specialization is becoming a key enabler of energyefficient performance. Future systems will be increasingly heterogeneous, integrating multiple specialized and programmable accelerators, each with different memory demands. Traditionally, communication between accelerators has been inefficient, typically orchestrated through explicit DMA transfers between different address spaces. More recently, industry has proposed unified coherent memory which enables implicit data movement and more data reuse, but often these interfaces limit the coherence flexibility available to heterogeneous systems. This paper demonstrates the benefits of fine-grained coherence specialization for heterogeneous systems. We propose an architecture that enables low-complexity independent specialization of each individual coherence request in heterogeneous workloads by building upon a simple and flexible baseline coherence interface, Spandex. We then describe how to optimize individual memory requests to improve cache reuse and performance-critical memory latency in emerging heterogeneous workloads. Collectively, our techniques enable significant gains, reducing execution time by up to 61% or network traffic by up to 99% while adding minimal complexity to the Spandex protocol.



قيم البحث

اقرأ أيضاً

366 - You Wu , Xuehai Qian 2020
We propose the first Reversible Coherence Protocol (RCP), a new protocol designed from ground up that enables invisible speculative load. RCP takes a bold approach by including the speculative loads and merge/purge operation in the interface between processor and cache coherence, and allowing them to participate in the coherence protocol. It means, speculative load, ordinary load/store, and merge/purge can all affect the state of a given cache line. RCP is the first coherence protocol that enables the commit and squash of the speculative load among distributed cache components in a general memory hierarchy. RCP incurs an average slowdown of (3.0%,8.3%,7.4%) on (SPEC2006,SPEC2017,PARSEC), which is lower compared to (26.5%,12%,18.3%) in InvisiSpec and (3.2%,9.4%,24.2%) in CleanupSpec. The coherence traffic overhead is on average 46%, compared to 40% and 27% of InvisiSpec and CleanupSpec, respectively. Even with higher traffic overhead (~46%), the performance overhead of RCP is lower than InvisiSpec and comparable to CleanupSpec. It reveals a key advantage of RCP: the coherence actions triggered by the merge and purge operations are not in the critical path of the execution and can be performed in the cache hierarchy concurrently with processor execution
One of the most critical aspects of integrating loosely-coupled accelerators in heterogeneous SoC architectures is orchestrating their interactions with the memory hierarchy, especially in terms of navigating the various cache-coherence options: from accelerators accessing off-chip memory directly, bypassing the cache hierarchy, to accelerators having their own private cache. By running real-size applications on FPGA-based prototypes of many-accelerator multi-core SoCs, we show that the best cache-coherence mode for a given accelerator varies at runtime, depending on the accelerators characteristics, the workload size, and the overall SoC status. Cohmeleon applies reinforcement learning to select the best coherence mode for each accelerator dynamically at runtime, as opposed to statically at design time. It makes these selections adaptively, by continuously observing the system and measuring its performance. Cohmeleon is accelerator-agnostic, architecture-independent, and it requires minimal hardware support. Cohmeleon is also transparent to application programmers and has a negligible software overhead. FPGA-based experiments show that our runtime approach offers, on average, a 38% speedup with a 66% reduction of off-chip memory accesses compared to state-of-the-art design-time approaches. Moreover, it can match runtime solutions that are manually tuned for the target architecture.
While multi-GPU (MGPU) systems are extremely popular for compute-intensive workloads, several inefficiencies in the memory hierarchy and data movement result in a waste of GPU resources and difficulties in programming MGPU systems. First, due to the lack of hardware-level coherence, the MGPU programming model requires the programmer to replicate and repeatedly transfer data between the GPUs memory. This leads to inefficient use of precious GPU memory. Second, to maintain coherency across an MGPU system, transferring data using low-bandwidth and high-latency off-chip links leads to degradation in system performance. Third, since the programmer needs to manually maintain data coherence, the programming of an MGPU system to maximize its throughput is extremely challenging. To address the above issues, we propose a novel lightweight timestamp-based coherence protocol, HALCONE, for MGPU systems and modify the memory hierarchy of the GPUs to support physically shared memory. HALCONE replaces the Compute Unit (CU) level logical time counters with cache level logical time counters to reduce coherence traffic. Furthermore, HALCONE introduces a novel timestamp storage unit (TSU) with no additional performance overhead in the main memory to perform coherence actions. Our proposed HALCONE protocol maintains the data coherence in the memory hierarchy of the MGPU with minimal performance overhead (less than 1%). Using a set of standard MGPU benchmarks, we observe that a 4-GPU MGPU system with shared memory and HALCONE performs, on average, 4.6$times$ and 3$times$ better than a 4-GPU MGPU system with existing RDMA and with the recently proposed HMG coherence protocol, respectively. We demonstrate the scalability of HALCONE using different GPU counts (2, 4, 8, and 16) and different CU counts (32, 48, and 64 CUs per GPU) for 11 standard benchmarks.
Artificial intelligence (AI) technologies have dramatically advanced in recent years, resulting in revolutionary changes in peoples lives. Empowered by edge computing, AI workloads are migrating from centralized cloud architectures to distributed edg e systems, introducing a new paradigm called edge AI. While edge AI has the promise of bringing significant increases in autonomy and intelligence into everyday lives through common edge devices, it also raises new challenges, especially for the development of its algorithms and the deployment of its services, which call for novel design methodologies catered to these unique challenges. In this paper, we provide a comprehensive survey of the latest enabling design methodologies that span the entire edge AI development stack. We suggest that the key methodologies for effective edge AI development are single-layer specialization and cross-layer co-design. We discuss representative methodologies in each category in detail, including on-device training methods, specialized software design, dedicated hardware design, benchmarking and design automation, software/hardware co-design, software/compiler co-design, and compiler/hardware co-design. Moreover, we attempt to reveal hidden cross-layer design opportunities that can further boost the solution quality of future edge AI and provide insights into future directions and emerging areas that require increased research focus.
The use of multi-chip modules (MCM) and/or multi-socket boards is the most suitable approach to increase the computation density of servers while keep chip yield attained. This paper introduces a new coherence protocol suitable, in terms of complexit y and scalability, for this class of systems. The proposal uses two complementary ideas: (1) A mechanism that dissociates complexity from performance by means of colored-token counting, (2) A construct that optimizes performance and cost by means of two functionally symmetrical modules working in the last level cache of each chip (D|F-LLC) and each memory controller (D|F-MEM). Each of these structures is divided into two parts: (2.1) The first one consists of a small loosely inclusive sparse directory where only the most actively shared data are tracked in the chip (D-LLC) from each memory controller (D-MEM) and, (2.2) The second is a d-left Counting Bloom Filter which stores approximate information about the blocks allocated, either inside the chip (F-LLC) or in the home memory controller (F-MEM). The coordinated work of both structures minimizes the coherence-related effects on the average memory latency perceived by the processor. Our proposal is able to improve on the performance of a HyperTransport-like coherence protocol by from 25%-to-60%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا