ﻻ يوجد ملخص باللغة العربية
We propose the first Reversible Coherence Protocol (RCP), a new protocol designed from ground up that enables invisible speculative load. RCP takes a bold approach by including the speculative loads and merge/purge operation in the interface between processor and cache coherence, and allowing them to participate in the coherence protocol. It means, speculative load, ordinary load/store, and merge/purge can all affect the state of a given cache line. RCP is the first coherence protocol that enables the commit and squash of the speculative load among distributed cache components in a general memory hierarchy. RCP incurs an average slowdown of (3.0%,8.3%,7.4%) on (SPEC2006,SPEC2017,PARSEC), which is lower compared to (26.5%,12%,18.3%) in InvisiSpec and (3.2%,9.4%,24.2%) in CleanupSpec. The coherence traffic overhead is on average 46%, compared to 40% and 27% of InvisiSpec and CleanupSpec, respectively. Even with higher traffic overhead (~46%), the performance overhead of RCP is lower than InvisiSpec and comparable to CleanupSpec. It reveals a key advantage of RCP: the coherence actions triggered by the merge and purge operations are not in the critical path of the execution and can be performed in the cache hierarchy concurrently with processor execution
The use of multi-chip modules (MCM) and/or multi-socket boards is the most suitable approach to increase the computation density of servers while keep chip yield attained. This paper introduces a new coherence protocol suitable, in terms of complexit
Hardware specialization is becoming a key enabler of energyefficient performance. Future systems will be increasingly heterogeneous, integrating multiple specialized and programmable accelerators, each with different memory demands. Traditionally, co
Formal analyses of incentives for compliance with network protocols often appeal to game-theoretic models and concepts. Applications of game-theoretic analysis to network security have generally been limited to highly stylized models, where simplifie
In-storage computing with modern solid-state drives (SSDs) enables developers to offload programs from the host to the SSD. It has been proven to be an effective approach to alleviate the I/O bottleneck. To facilitate in-storage computing, many frame
DRAM is the dominant main memory technology used in modern computing systems. Computing systems implement a memory controller that interfaces with DRAM via DRAM commands. DRAM executes the given commands using internal components (e.g., access transi