ﻻ يوجد ملخص باللغة العربية
While multi-GPU (MGPU) systems are extremely popular for compute-intensive workloads, several inefficiencies in the memory hierarchy and data movement result in a waste of GPU resources and difficulties in programming MGPU systems. First, due to the lack of hardware-level coherence, the MGPU programming model requires the programmer to replicate and repeatedly transfer data between the GPUs memory. This leads to inefficient use of precious GPU memory. Second, to maintain coherency across an MGPU system, transferring data using low-bandwidth and high-latency off-chip links leads to degradation in system performance. Third, since the programmer needs to manually maintain data coherence, the programming of an MGPU system to maximize its throughput is extremely challenging. To address the above issues, we propose a novel lightweight timestamp-based coherence protocol, HALCONE, for MGPU systems and modify the memory hierarchy of the GPUs to support physically shared memory. HALCONE replaces the Compute Unit (CU) level logical time counters with cache level logical time counters to reduce coherence traffic. Furthermore, HALCONE introduces a novel timestamp storage unit (TSU) with no additional performance overhead in the main memory to perform coherence actions. Our proposed HALCONE protocol maintains the data coherence in the memory hierarchy of the MGPU with minimal performance overhead (less than 1%). Using a set of standard MGPU benchmarks, we observe that a 4-GPU MGPU system with shared memory and HALCONE performs, on average, 4.6$times$ and 3$times$ better than a 4-GPU MGPU system with existing RDMA and with the recently proposed HMG coherence protocol, respectively. We demonstrate the scalability of HALCONE using different GPU counts (2, 4, 8, and 16) and different CU counts (32, 48, and 64 CUs per GPU) for 11 standard benchmarks.
In recent years, machine intelligence (MI) applications have emerged as a major driver for the computing industry. Optimizing these workloads is important but complicated. As memory demands grow and data movement overheads increasingly limit performa
Cache coherence protocols such as MESI that use writer-initiated invalidation have high complexity and sometimes have poor performance and energy usage, especially under false sharing. Such protocols require numerous transient states, a shared direct
Carbon nanotube field-effect transistors (CNFET) emerge as a promising alternative to CMOS transistors for the much higher speed and energy efficiency, which makes the technology particularly suitable for building the energy-hungry last level cache (
Virtually indexed and virtually tagged (VIVT) caches are an attractive option for micro-processor level-1 caches, because of their fast response time and because they are cheaper to implement than more complex caches such as virtually-indexed physica
The use of multi-chip modules (MCM) and/or multi-socket boards is the most suitable approach to increase the computation density of servers while keep chip yield attained. This paper introduces a new coherence protocol suitable, in terms of complexit