ﻻ يوجد ملخص باللغة العربية
Viscoelastic flow through an abrupt planar contraction geometry above a certain Weissenberg number (Wi) is well known to become unstable upstream of the contraction plane via a central jet separating from the walls and forming vortices in the salient corners. Here, for the first time we consider three-dimensional (3D) viscoelastic contraction flows in a microfabricated glass square-square contraction geometry. We employ state-of-the-art microtomographic particle image velocimetry to produce time-resolved and volumetric quantification of the 3D viscoelastic instabilities arising in a dilute polymer solution driven through the geometry over a wide range of Wi but at negligible Reynolds number. Based on our observations, we describe new insights into the growth, propagation, and transient dynamics of an elastic vortex formed upstream of the 3D micro-contraction due to flow jetting towards the contraction. At low Wi we observe vortex growth for increasing Wi, followed by a previously unreported vortex growth plateau region. In the plateau region, the vortex circulates around the jet with a period that decreases with Wi but an amplitude that is independent of Wi. In addition, we report new out-of-plane asymmetric jetting behaviour with a phase-wise dependence on Wi. Finally, we resolve the rate-of-strain tensor D and ascribe local gradients in D as the underlying driver of circulation via strain-hardening of the fluid in the wake of the jet.
It is argued herein that when PIV is used to measure turbulence, it can be treated as a time-dependent signal. The `output velocity consists of three primary contributions: the time-dependent velocity, a noise arising from the quantization (or pixeli
The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a
The interaction of flexible structures with viscoelastic flows can result in very rich dynamics. In this paper, we present the results of the interactions between the flow of a viscoelastic polymer solution and a cantilevered beam in a confined micro
Viscoelastic fluids are a common subclass of rheologically complex materials that are encountered in diverse fields from biology to polymer processing. Often the flows of viscoelastic fluids are unstable in situations where ordinary Newtonian fluids
In the past decade, advances in electronics technology have made larger imaging sensors available to the experimental fluid mechanics community. These advancements have enabled the measurement of 2-component 2-dimensional (2C-2D) velocity fields usin