ﻻ يوجد ملخص باللغة العربية
In the past decade, advances in electronics technology have made larger imaging sensors available to the experimental fluid mechanics community. These advancements have enabled the measurement of 2-component 2-dimensional (2C-2D) velocity fields using particle image velocimetry (PIV) with much higher spatial resolution than previously possible. However, due to the large size of the sensor, the lens distortion needs to be taken into account as it will now have a more significant effect on the measurement quality that must be corrected to ensure accurate high-fidelity 2C-2D velocity field measurements. In this paper, two dewarping models, a second-order rational function (R2) and a bicubic polynomial (P3) are investigated with regards to 2C-2D PIV measurements of a turbulent boundary layer (TBL) using a large imaging sensor. Two approaches are considered and compared: (i) dewarping the images prior to the PIV cross-correlation analysis and (ii) undertaking the PIV cross-correlation analysis using the original recorded distorted images then followed by using the mapping functions derived for image dewarping to provide the correct spatial location of the velocity measurement point. The results demonstrate that the use of P3 dewarping model to correct lens distortion yields better results than the R2 dewarping model. Furthermore, both approaches for the P3 dewarping model yield results which are statistically indistinguishable.
We study turbulent flows in a smooth straight pipe of circular cross--section up to $Re_{tau} approx 6000$ using direct--numerical-simulation (DNS) of the Navier--Stokes equations. The DNS results highlight systematic deviations from Prandtl friction
The interplay of inertia and elasticity is shown to have a significant impact on the transport of filamentary objects, modelled by bead-spring chains, in a two-dimensional turbulent flow. We show how elastic interactions amongst inertial beads result
A study of large-scale motions from a new direct numerical simulation database of the turbulent boundary layer up to Re{theta} ~ 2500 is presented. The statistics of large-scale streamwise structures have been investigated using two-dimensional and t
On the basis of (i) Particle Image Velocimetry data of a Turbulent Boundary Layer with large field of view and good spatial resolution and (ii) a mathematical relation between the energy spectrum and specifically modeled flow structures, we show that
High-spatial-resolution (HSR) two-component, two-dimensional particle-image-velocimetry (2C-2D PIV) measurements of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) and an adverse-pressure-gradient (APG)-TBL were taken in the LMFL High R