ﻻ يوجد ملخص باللغة العربية
It is argued herein that when PIV is used to measure turbulence, it can be treated as a time-dependent signal. The `output velocity consists of three primary contributions: the time-dependent velocity, a noise arising from the quantization (or pixelization), and a noise contribution from the fact that the velocity is not uniform inside the interrogation volume. For both of the latter their variances depend inversely on the average number of particles or images) in this interrogation volume. All three of these are spatially filtered by the finite extent of the interrogation window. Since the above noises are associated directly with the individual particles (or particle images), the noise between different realizations and different interrogation volumes is statistically independent.
Viscoelastic flow through an abrupt planar contraction geometry above a certain Weissenberg number (Wi) is well known to become unstable upstream of the contraction plane via a central jet separating from the walls and forming vortices in the salient
The presence of stratified layer in atmosphere and ocean leads to buoyant vertical motions, commonly referred to as plumes. It is important to study the mixing dynamics of a plume at a local scale in order to model their evolution and growth. Such a
In the past decade, advances in electronics technology have made larger imaging sensors available to the experimental fluid mechanics community. These advancements have enabled the measurement of 2-component 2-dimensional (2C-2D) velocity fields usin
An analytical framework for the propagation of velocity errors into PIV-based pressure calculation is extended. Based on this framework, the optimal spatial resolution and the corresponding minimum field-wide error level in the calculated pressure fi
High-spatial-resolution (HSR) two-component, two-dimensional particle-image-velocimetry (2C-2D PIV) measurements of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) and an adverse-pressure-gradient (APG)-TBL were taken in the LMFL High R