ﻻ يوجد ملخص باللغة العربية
Despite the rapid development of quantum computing these years, state-of-the-art quantum devices still contain only a very limited number of qubits. One possible way to execute more realistic algorithms in near-term quantum devices is to employ dynamic quantum circuits, in which measurements can happen during the circuit and their outcomes are used to control other parts of the circuit. This technique can help to significantly reduce the resources required to achieve a given accuracy of a quantum algorithm. However, since this type of quantum circuits are more flexible, their verification is much more challenging. In this paper, we give a formal definition of dynamic quantum circuits and then propose to characterise their functionality in terms of ensembles of linear operators. Based on this novel semantics, two dynamic quantum circuits are equivalent if they have the same functionality. We further propose and implement two decision diagram-based algorithms for checking the equivalence of dynamic quantum circuits. Experiments show that embedding classical logic into conventional quantum circuits does not incur significant time and space burden.
We study the fundamental design automation problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably. The notion of approximate equivalence of (possibly noisy) quantum cir
Suppose two quantum circuit chips are located at different places, for which we do not have any prior knowledge, and cannot see the internal structures either. If we want to find out whether they have the same functions or not with certainty, what sh
In this talk, we will describe a framework for assertion-based verification (ABV) of quantum circuits by applying model checking techniques for quantum systems developed in our previous work, in which: (i) Noiseless and noisy quantum circuits are m
In this paper, we introduce the model of quantum Mealy machines and study the equivalence checking and minimisation problems of them. Two efficient algorithms are developed for checking equivalence of two states in the same machine and for checking e
The execution of quantum circuits on real systems has largely been limited to those which are simply time-ordered sequences of unitary operations followed by a projective measurement. As hardware platforms for quantum computing continue to mature in