ترغب بنشر مسار تعليمي؟ اضغط هنا

The Role of Dust, UV Luminosity and Large-scale Environment on the Escape of Lya Photons: A Case Study of a Protocluster field at z = 3.1

62   0   0.0 ( 0 )
 نشر من قبل Yun Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed characterization of the Lya properties for 93 Lya emitters (LAEs) at z~3.1 selected from the D1 field of the Canada-France-Hawaii-Telescope Legacy Survey, including 24 members of a massive protocluster. The median-stacked Lya image shows an extended Lya halo (LAH) surrounding the galaxy with the exponential scale length 4.9+/-0.7kpc, which accounts for roughly half of the total line flux. Accounting for the LAH contribution, the total Lya escape fraction, f_esc, is 40+/-26%. Combining the dataset with existing measurements, we find a dependence of f_esc on the galaxys UV slope (beta) and UV luminosity (L_UV). The simultaneous use of both parameters allows prediction of f_esc within 0.18dex, a substantial improvement over 0.23dex when only beta is used. The correlation between f_esc and E(B-V) suggests that Lya photons undergo interstellar dust attenuation in a similar manner to continuum photons. Yet, Lya transmission is typically higher than that expected for continuum photons at similar wavelength by a factor, which depends on UV luminosity, up to 2 in the samples we studied. These results hint at complex geometries and physical conditions of the interstellar medium, which affect the Lya transmission or production. Alternatively, the dust law may change with luminosity leading to over-or under-estimation of f_esc. Finally, we report that protocluster member LAEs tend to be bluer and more UV-luminous than their field cousins, resulting in systematically higher f_esc values. We speculate that it may be due to the widespread formation of young low-mass galaxies in dense gas-rich environments.


قيم البحث

اقرأ أيضاً

We report the discovery of a large-scale coherent filamentary structure of Lyman alpha emitters in a redshift space at z=3.1. We carried out spectroscopic observations to map the three dimensional structure of the belt-like feature of the Lyman alpha emitters discovered by our previous narrow-band imaging observations centered on the protocluster at z=3.1. The feature was found to consist of at least three physical filaments connecting with each other. The result is in qualitative agreement with the prediction of the biased galaxy-formation theories that galaxies preferentially formed in large-scale filamentary or sheet-like mass overdensities in the early Universe. We also found that the two known giant Lyman alpha emission-line nebulae showing high star-formation activities are located near the intersection of these filaments, which presumably evolves into a massive cluster of galaxies in the local Universe. This may suggest that massive galaxy formation occurs at the characteristic place in the surrounding large-scale structure at high redshift.
The usefulness of H I Lyman-alpha photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detai l out to a few x100 Mpc. Past nearby (z<0.3) spectroscopic studies are based on small samples and/or kinematically unresolved data. Taking advantage of the high sensitivity of HSTs COS, we observed the Lyman-alpha lines of 20 H-alpha-selected galaxies located at <z>=0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Lyman-alpha lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young (le 10 Myr) stellar populations, have rest-frame equivalent widths in the range 1-12 AA, and have Lyman-alpha escape fractions within the COS aperture in the range 1-12 %. One emitter has a double-peaked Lyman-alpha with peaks 370 km/s apart and a stronger blue peak. Excluding this object, the emitters have Lyman-alpha and O I lambda 1302 offsets from H-alpha in agreement with expanding shell models and LBG observations. The absorbers have offsets that are almost consistent with a static medium. We find no one-to-one correspondence between Lyman-alpha emission and age, metallicity, or reddening. Thus, we confirm that Lyman-alpha is enhanced by outflows and is regulated by the dust and H I column density surrounding the hot stars.
We exploit ALMA 870um observations to measure the star-formation rates (SFRs) of eight X-ray detected Active Galactic Nuclei (AGNs) in a z~3.1 protocluster, four of which reside in extended Ly-alpha haloes (often termed Ly-alpha blobs: LABs). Three o f the AGNs are detected by ALMA and have implied SFRs of ~220-410~M_sun/yr; the non detection of the other five AGNs places SFR upper limits of <210 M_sun/yr. The mean SFR of the protocluster AGNs (~110-210 M_sun/yr) is consistent (within a factor of ~0.7-2.3) with that found for co-eval AGNs in the field, implying that galaxy growth is not significantly accelerated in these systems. However, when also considering ALMA data from the literature, we find evidence for elevated mean SFRs (up-to a factor of ~5.9 over the field) for AGNs at the protocluster core, indicating that galaxy growth is significantly accelerated in the central regions of the protocluster. We also show that all of the four protocluster LABs are associated with an ALMA counterpart within the extent of their Ly-alpha emission. The SFRs of the ALMA sources within the LABs (~150-410 M_sun/yr) are consistent with those expected for co-eval massive star-forming galaxies in the field. Furthermore, the two giant LABs (with physical extents of >100 kpc) do not host more luminous star formation than the smaller LABs, despite being an order of magnitude brighter in Ly-alpha emission. We use these results to discuss star formation as the power source of LABs.
94 - J. E. Geach 2005
We present the results from a submm survey of a sample of 23 giant Lya emitting nebulae in the overdensity at z=3.09 in the SA22 field. These objects, which have become known as Lya Blobs (LABs) have a diverse range of morphology and surface brightne ss, but the nature of their power source is unclear - with cooling flows and/or AGN/starburst ionised winds being possibilities. Using the SCUBA submm camera we measure the 850um flux of a sample of LABs, detecting four LABs at >3.5sigma individually, and a modest statistical detection of the full sample at about 3mJy. These fluxes correspond to bolometric luminosities in the ultraluminous regime, with star-formation rates of about 1e3 Msun/yr. We show there is a trend between Lya luminosity and bolometric output, which suggests that a galactic scale superwind generated from starbursts of age 10-100Myr may be responsible for the Lya emission. We estimate the star-formation rate density in SA22 to be >3 Msun/yr/Mpc^3 - greater than the field at this epoch, and note that there are now 7 submm galaxies in the SA22 structure, making this region the richest association of these intensely active galaxies. Finally we suggest that Lya haloes may be a common feature of the submm population in general, and have an important role in the heating and enrichment of the intergalactic medium.
118 - A. Beelen , A. Omont , N. Bavouzet 2008
We present observations aimed at exploring both the nature of Lya emitting nebulae (Lya blobs) at z=2.38 and the way they trace large scale structure (LSS), by exploring their proximity to maximum starbursts through submillimeter emission. Our most i mportant objectives are to make a census of associated submillimeter galaxies (SMGs), check their properties, and look for a possible overdensity in the protocluster J2142-4426 at z=2.38. We used the newly commissioned Large APEX Bolometer Camera (LABoCa) on the Atacama Pathfinder EXperiment (APEX) telescope, in its Science Verification phase, to carry out a deep 10x10 map at 870 micron, and we performed multiple checks of the quality of data processing and source extraction. Our map, the first published deep image, confirms the capabilities of APEX/LABoCa as the most efficient current equipment for wide and deep submm mapping. Twenty-two sources were securely extracted with 870 micron flux densities in the range 3-21 mJy, rms noise 0.8-2.4 mJy, and far-IR luminosities probably in the range ~5-20 x 10(12) Lo. Only one of the four 50 kpc-extended Lya blobs has a secure 870 micron counterpart. The 870 micron source counts in the whole area are marginally higher than in the SHADES SCUBA survey, with a possible over-density around this blob. The majority of the 3.6-24 micron SEDs of the submillimeter sources indicate they are starburst dominated, with redshifts mostly >2. However, there is evidence of a high-z AGN in ~30% of the sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا