ترغب بنشر مسار تعليمي؟ اضغط هنا

A submm survey of Lyman-alpha haloes in the SA22 protocluster at z=3.1

95   0   0.0 ( 0 )
 نشر من قبل James Geach
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. E. Geach




اسأل ChatGPT حول البحث

We present the results from a submm survey of a sample of 23 giant Lya emitting nebulae in the overdensity at z=3.09 in the SA22 field. These objects, which have become known as Lya Blobs (LABs) have a diverse range of morphology and surface brightness, but the nature of their power source is unclear - with cooling flows and/or AGN/starburst ionised winds being possibilities. Using the SCUBA submm camera we measure the 850um flux of a sample of LABs, detecting four LABs at >3.5sigma individually, and a modest statistical detection of the full sample at about 3mJy. These fluxes correspond to bolometric luminosities in the ultraluminous regime, with star-formation rates of about 1e3 Msun/yr. We show there is a trend between Lya luminosity and bolometric output, which suggests that a galactic scale superwind generated from starbursts of age 10-100Myr may be responsible for the Lya emission. We estimate the star-formation rate density in SA22 to be >3 Msun/yr/Mpc^3 - greater than the field at this epoch, and note that there are now 7 submm galaxies in the SA22 structure, making this region the richest association of these intensely active galaxies. Finally we suggest that Lya haloes may be a common feature of the submm population in general, and have an important role in the heating and enrichment of the intergalactic medium.

قيم البحث

اقرأ أيضاً

We present the results of the extensive narrow-band survey of Lyalpha emission-line objects at z=3.1 in the 1.38 deg^2 area surrounding the high density region of star-forming galaxies at z=3.09 in the SSA22 field, as well as in the 1.04 deg^2 area o f the three separated general blank fields. In total of 2161 Lyalpha emitters, 1394 in the SSA22 fields and 767 in the general fields, respectively, are detected to the narrow-band AB magnitude limit of 25.73, which corresponds to the line flux of 1.8 x 10^{-17} erg s^{-1} cm^{-2} or luminosity of 1.5 x 10^{42} erg s^{-1} at z=3.1, above the observed equivalent width threshold, 190AA . The average surface number density of the emitters at z=3.1 in the whole general fields above the thresholds is 0.20+-0.01 arcmin^{-2}. The SSA22 high-density region at z=3.09 whose peak local density is 6 times the average is found to be the most prominent outstanding structure in the whole surveyed area and is firmly identified as a robust `protocluster with the enough large sample. We also compared the overdensity of the 100 arcmin^2 and 700 arcmin^2 areas which contain the protocluster with the expected fluctuation of the dark matter as well as those of the model galaxies in cosmological simulations. We found that the peak height values of the overdensity correspond to be 8-10 times and 3-4 times of the expected standard deviations of the counts of Lyalpha emitters at z=3.1 in the corresponding volume, respectively. We conclude that the structure at z=3.09 in the SSA22 field is a very significant and rare density peak up to the scale of 60 Mpc.
We selected 40 candidate Lyman Alpha Emitting galaxies (LAEs) at z ~=3.1 with observed frame equivalent widths >150A and inferred emission line fluxes >2.5x10^-17 ergs/cm^2/s from deep narrow-band and broad-band MUSYC images of the Extended Chandra D eep Field South. Covering 992 sq. arcmin, this is the largest ``blank field surveyed for LAEs at z ~3, allowing an improved estimate of the space density of this population of 3+-1x10^-4 h_70^3/Mpc^3. Spectroscopic follow-up of 23 candidates yielded 18 redshifts, all at z ~=3.1. Over 80% of the LAEs are dimmer in continuum magnitude than the typical Lyman break galaxy spectroscopic limit of R= 25.5 (AB), with a median continuum magnitude R ~=27 and very blue continuum colors, (V-z) ~=0. Over 80% of the LAEs have the right UVR colors to be selected as Lyman break galaxies, but only 10% also have R<=25.5. Stacking the UBVRIzJK fluxes reveals that LAEs have stellar masses ~=5x10^8 h_70^-2 M_sun and minimal dust extinction, A_V < ~ 0.1. Inferred star formation rates are ~=6 h_70^-2 M_sun/yr, yielding a cosmic star formation rate density of 2x10^-3 h_70 M_sun/yr/Mpc^3. None of our LAE candidates show evidence for rest-frame emission line equivalent widths EW_rest>240A which might imply a non-standard IMF. One candidate is detected by Chandra, implying an AGN fraction of 2+-2% for LAE candidate samples. In summary, LAEs at z ~ 3 have rapid star formation, low stellar mass, little dust obscuration and no evidence for a substantial AGN component.
74 - Yuichi Matsuda 2006
We present the results of an intermediate resolution (~2 angstrom) spectroscopy of a sample of 37 candidate Lyman alpha blobs and emitters at redshift z=3.1 using the DEIMOS spectrograph on the 10 m Keck telescope. The emission lines are detected for all the 37 objects and have variety in their line profiles. The Lyman alpha velocity widths (FWHM) of the 28 objects with higher quality spectra, measured by fitting a single Gaussian profile, are in the range of 150 - 1700 km/s and correlate with the Lyman alpha spatial extents. All the 12 Lyman alpha blobs (>16 arcsec^2) have large velocity widths of > 500 km/s. While there are several possible physical interpretations of the Lyman alpha velocity widths (motion of gravitationally-bound gas clouds, inflows, merging of clumps, or outflows from superwinds), the large velocity widths of the Lyman alpha blobs suggest that they are the sites of massive galaxy formation. If we assume gravitationally-bound gas clouds, the dynamical masses of the Lyman alpha blobs are estimated to be ~10^12 - 10^13 Msun. Even for the case of outflows, the outflow velocities are likely to be the same order of the rotation velocities as inferred from the observational evidence for local starburst galaxies.
Protoclusters, the progenitors of the most massive structures in the Universe, have been identified at redshifts of up to 6.6. Besides exploring early structure formation, searching for protoclusters at even higher redshifts is particularly useful to probe the reionization. Here we report the discovery of the protocluster LAGER-z7OD1 at a redshift of 6.93, when the Universe was only 770 million years old and could be experiencing rapid evolution of the neutral hydrogen fraction in the intergalactic medium. The protocluster is identified by an overdensity of 6 times the average galaxy density, and with 21 narrowband selected Lyman-$alpha$ galaxies, among which 16 have been spectroscopically confirmed. At redshifts similar to or above this record, smaller protogroups with fewer members have been reported. LAGER-z7OD1 shows an elongated shape and consists of two subprotoclusters, which would have merged into one massive cluster with a present-day mass of $3.7 times 10^{15}$ solar masses. The total volume of the ionized bubbles generated by its member galaxies is found to be comparable to the volume of the protocluster itself, indicating that we are witnessing the merging of the individual bubbles and that the intergalactic medium within the protocluster is almost fully ionized. LAGER-z7OD1 thus provides a unique natural laboratory to investigate the reionization process.
We present spectroscopic measurements of the [OIII] emission line from two subregions of strong Lyman-alpha emission in a radio-quiet Lyman-alpha blob (LAB). The blob under study is LAB1 (Steidel et al. 2000) at z ~ 3.1, and the [OIII] detections are from the two Lyman break galaxies embedded in the blob halo. The [OIII] measurements were made with LUCIFER on the 8.4m Large Binocular Telescope and NIRSPEC on 10m Keck Telescope. Comparing the redshift of the [OIII] measurements to Lyman-alpha redshifts from SAURON (Weijmans et al. 2010) allows us to take a step towards understanding the kinematics of the gas in the blob. Using both LUCIFER and NIRSPEC we find velocity offsets between the [OIII] and Lyman-alpha redshifts that are modestly negative or consistent with 0 km/s in both subregions studied (ranging from -72 +/- 42 -- +6 +/- 33 km/s). A negative offset means Lyman-alpha is blueshifted with respect to [OIII], a positive offset then implies Lyman-alpha is redshifted with respect to [OIII]. These results may imply that outflows are not primarily responsible for Lyman alpha escape in this LAB, since outflows are generally expected to produce a positive velocity offset (McLinden et al. 2011). In addition, we present an [OIII] line flux upper limit on a third region of LAB1, a region that is unassociated with any underlying galaxy. We find that the [OIII] upper limit from the galaxy-unassociated region of the blob is at least 1.4 -- 2.5 times fainter than the [OIII] flux from one of the LBG-associated regions and has an [OIII] to Lyman-alpha ratio measured at least 1.9 -- 3.4 times smaller than the same ratio measured from one of the LBGs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا