ترغب بنشر مسار تعليمي؟ اضغط هنا

Lya escape from z~0.03 star-forming galaxies: the dominant role of outflows

107   0   0.0 ( 0 )
 نشر من قبل Aida Wofford
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The usefulness of H I Lyman-alpha photons for characterizing star formation in the distant universe is limited by our understanding of the astrophysical processes that regulate their escape from galaxies. These processes can only be observed in detail out to a few x100 Mpc. Past nearby (z<0.3) spectroscopic studies are based on small samples and/or kinematically unresolved data. Taking advantage of the high sensitivity of HSTs COS, we observed the Lyman-alpha lines of 20 H-alpha-selected galaxies located at <z>=0.03. The galaxies cover a broad range of luminosity, oxygen abundance, and reddening. In this paper, we characterize the observed Lyman-alpha lines and establish correlations with fundamental galaxy properties. We find seven emitters. These host young (le 10 Myr) stellar populations, have rest-frame equivalent widths in the range 1-12 AA, and have Lyman-alpha escape fractions within the COS aperture in the range 1-12 %. One emitter has a double-peaked Lyman-alpha with peaks 370 km/s apart and a stronger blue peak. Excluding this object, the emitters have Lyman-alpha and O I lambda 1302 offsets from H-alpha in agreement with expanding shell models and LBG observations. The absorbers have offsets that are almost consistent with a static medium. We find no one-to-one correspondence between Lyman-alpha emission and age, metallicity, or reddening. Thus, we confirm that Lyman-alpha is enhanced by outflows and is regulated by the dust and H I column density surrounding the hot stars.

قيم البحث

اقرأ أيضاً

92 - Hidenobu Yajima 2012
A large number of high-redshift galaxies have been discovered via their narrow-band Lya line or broad-band continuum colors in recent years. The nature of the escaping process of photons from these early galaxies is crucial to understanding galaxy ev olution and the cosmic reionization. Here, we investigate the escape of Lya, non-ionizing UV-continuum (l = 1300 - 1600 angstrom in rest frame), and ionizing photons (l < 912 angstrom) from galaxies by combining a cosmological hydrodynamic simulation with three-dimensional multi-wavelength radiative transfer calculations. The galaxies are simulated in a box of 5^3 h^-3 Mpc^3 with high resolutions using the Aquila initial condition which reproduces a Milky Way-like galaxy at redshift z=0. We find that the escape fraction (fesc) of these different photons shows a complex dependence on redshift and galaxy properties: fesc(Lya) and fesc(UV) appear to evolve with redshift, and they show similar, weak correlations with galaxy properties such as mass, star formation, metallicity, and dust content, while fesc(Ion) remains roughly constant at ~ 0.2 from z ~ 0 - 10, and it does not show clear dependence on galaxy properties. fesc(Lya) correlates more strongly with fesc(UV) than with fesc(Ion). In addition, we find a relation between the emergent Lya luminosity and the ionizing photon emissivity of Lyman Alpha Emitters (LAEs). By combining this relation with the observed luminosity functions of LAEs at different redshift, we estimate the contribution from LAEs to the reionization of intergalactic medium (IGM). Our result suggests that ionizing photons from LAEs alone are not sufficient to ionize IGM at z > 6, but they can maintain the ionization of IGM at z ~ 0 - 5.
We study the star formation rates (SFRs) of galaxies as a function of local galaxy density at 0.6<z<0.9. We used a low-dispersion prism in IMACS on the 6.5-m Baade (Magellan I) telescope to obtain spectra and measured redshifts to a precision of sigm a_z/(1+z)=1% for galaxies with z<23.3 AB mag. We utilized a stellar mass-limited sample of 977 galaxies above M>1.8x10^{10} Msun to conduct our main analysis. With three different SFR indicators, (1) Spitzer MIPS 24-micron imaging, (2) SED fitting, and (3) [OII]3727 emission, we find the median specific SFR (SSFR) and SFR to decline from the low-density field to the cores of groups and a rich cluster. For the SED and [OII] based SFRs, the decline in SSFR is roughly an order of magnitude while for the MIPS based SFRs, the decline is a factor of ~4. We find approximately the same magnitude of decline in SSFR even after removing the sample of galaxies near the cluster. Galaxies in groups and a cluster at these redshifts therefore have lower star formation (SF) activity than galaxies in the field, as is the case at z~0. We investigated whether the decline in SFR with increasing density is caused by a change in the proportion of quiescent and star forming galaxies (SFGs) or by a decline in the SFRs of SFGs. Using the rest-frame U-V and V-J colors to distinguish quiescent galaxies from SFGs we find the fraction of quiescent galaxies increases from ~32% to 79% from low to high density. In addition, we find the SSFRs of SFGs, selected based on U-V and V-J colors, to decline with increasing density by factors of ~5-6 for the SED and [OII] based SFRs. The MIPS based SSFRs for SFGs decline with a shallower slope. The order of magnitude decline in the SSFR-density relation at 0.6<z<0.9 is therefore driven by both a combination of declining SFRs of SFGs as well as a changing mix of SFGs and quiescent galaxies [ABRIDGED].
The Lyman-alpha (Lya) emission line is the primary observational signature of star-forming galaxies at the highest redshifts, and has enabled the compilation of large samples of galaxies with which to study cosmic evolution. The resonant nature of th e line, however, means that Lya photons scatter in the neutral interstellar medium of their host galaxies, and their sensitivity to absorption by interstellar dust may therefore be enhanced greatly. This implies that the Lya luminosity may be significantly reduced, or even completely suppressed. Hitherto, no unbiased empirical test of the escaping fraction (f_esc) of Lya photons has been performed at high redshifts. Here we report that the average fesc from star-forming galaxies at redshift z = 2.2 is just 5 per cent by performing a blind narrowband survey in Lya and Ha. This implies that numerous conclusions based on Lya-selected samples will require upwards revision by an order of magnitude and we provide a benchmark for this revision. We demonstrate that almost 90 per cent of star-forming galaxies emit insufficient Lya to be detected by standard selection criteria. Both samples show an anti-correlation of fesc with dust content, and we show that Lya- and Ha-selection recovers populations that differ substantially in dust content and fesc.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
338 - Hakim Atek 2013
[abridged] Among the different observational techniques used to select high-redshift galaxies, the hydrogen recombination line Lyman-alpha (Lya) is of particular interest as it gives access to the measurement of cosmological quantities such as the st ar formation rate of distant galaxy populations. However, the interpretation of this line and the calibration of such observables is still subject to serious uncertainties. Therefore, it important to understand under what conditions the Lya line can be used as a reliable star formation diagnostic tool. We use a sample of 24 Lya emitters at z ~ 0.3 with an optical spectroscopic follow-up to calculate the Lya escape fraction and its dependency upon different physical properties. We also examine the reliability of Lya as a star formation rate indicator. We combine these observations with a compilation of Lya emitters selected at z = 0 - 0.3 to assemble a larger sample. The Lya escape fraction depends clearly on the dust extinction following the relation fesc(Lya) = C(Lya) x 10^(-0.4 E(B-V) k(Lya)), but with a shallower slope than previously reported, with k(Lya) ~ 6.67 and C(Lya) = 0.22. However, the correlation does not follow the expected curve for a simple dust attenuation. We explore the various mechanisms than lead to fesc(Lya) values above the continuum extinction curve, i.e. to an enhancement of the Lya output. We also observe that the strength of Lya and the escape fraction appear unrelated to the galaxy metallicity. Regarding the reliability of Lya as a star formation rate (SFR) indicator, we show that the deviation of SFR(Lya) from the true SFR (as traced by the UV continuum) is a function of the observed SFR(UV), which can be seen as the decrease of fesc(Lya) with increasing UV luminosity. Moreover, we observe a redshift-dependence of this relationship revealing the underlying evolution of fesc(Lya) with redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا