ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent Reinforcement Learning for Weakly Cooperative Multiagent Traffic Control Problem

74   0   0.0 ( 0 )
 نشر من قبل Chengwei Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The adaptive traffic signal control (ATSC) problem can be modeled as a multiagent cooperative game among urban intersections, where intersections cooperate to optimize their common goal. Recently, reinforcement learning (RL) has achieved marked successes in managing sequential decision making problems, which motivates us to apply RL in the ASTC problem. Here we use independent reinforcement learning (IRL) to solve a complex traffic cooperative control problem in this study. One of the largest challenges of this problem is that the observation information of intersection is typically partially observable, which limits the learning performance of IRL algorithms. To this, we model the traffic control problem as a partially observable weak cooperative traffic model (PO-WCTM) to optimize the overall traffic situation of a group of intersections. Different from a traditional IRL task that averages the returns of all agents in fully cooperative games, the learning goal of each intersection in PO-WCTM is to reduce the cooperative difficulty of learning, which is also consistent with the traffic environment hypothesis. We also propose an IRL algorithm called Cooperative Important Lenient Double DQN (CIL-DDQN), which extends Double DQN (DDQN) algorithm using two mechanisms: the forgetful experience mechanism and the lenient weight training mechanism. The former mechanism decreases the importance of experiences stored in the experience reply buffer, which deals with the problem of experience failure caused by the strategy change of other agents. The latter mechanism increases the weight experiences with high estimation and `leniently trains the DDQN neural network, which improves the probability of the selection of cooperative joint strategies. Experimental results show that CIL-DDQN outperforms other methods in almost all performance indicators of the traffic control problem.



قيم البحث

اقرأ أيضاً

Collective human knowledge has clearly benefited from the fact that innovations by individuals are taught to others through communication. Similar to human social groups, agents in distributed learning systems would likely benefit from communication to share knowledge and teach skills. The problem of teaching to improve agent learning has been investigated by prior works, but these approaches make assumptions that prevent application of teaching to general multiagent problems, or require domain expertise for problems they can apply to. This learning to teach problem has inherent complexities related to measuring long-term impacts of teaching that compound the standard multiagent coordination challenges. In contrast to existing works, this paper presents the first general framework and algorithm for intelligent agents to learn to teach in a multiagent environment. Our algorithm, Learning to Coordinate and Teach Reinforcement (LeCTR), addresses peer-to-peer teaching in cooperative multiagent reinforcement learning. Each agent in our approach learns both when and what to advise, then uses the received advice to improve local learning. Importantly, these roles are not fixed; these agents learn to assume the role of student and/or teacher at the appropriate moments, requesting and providing advice in order to improve teamwide performance and learning. Empirical comparisons against state-of-the-art teaching methods show that our teaching agents not only learn significantly faster, but also learn to coordinate in tasks where existing methods fail.
In many real-world tasks, multiple agents must learn to coordinate with each other given their private observations and limited communication ability. Deep multiagent reinforcement learning (Deep-MARL) algorithms have shown superior performance in su ch challenging settings. One representative class of work is multiagent value decomposition, which decomposes the global shared multiagent Q-value $Q_{tot}$ into individual Q-values $Q^{i}$ to guide individuals behaviors, i.e. VDN imposing an additive formation and QMIX adopting a monotonic assumption using an implicit mixing method. However, most of the previous efforts impose certain assumptions between $Q_{tot}$ and $Q^{i}$ and lack theoretical groundings. Besides, they do not explicitly consider the agent-level impact of individuals to the whole system when transforming individual $Q^{i}$s into $Q_{tot}$. In this paper, we theoretically derive a general formula of $Q_{tot}$ in terms of $Q^{i}$, based on which we can naturally implement a multi-head attention formation to approximate $Q_{tot}$, resulting in not only a refined representation of $Q_{tot}$ with an agent-level attention mechanism, but also a tractable maximization algorithm of decentralized policies. Extensive experiments demonstrate that our method outperforms state-of-the-art MARL methods on the widely adopted StarCraft benchmark across different scenarios, and attention analysis is further conducted with valuable insights.
108 - Yusen Huo , Qinghua Tao , 2019
Traffic signal control has long been considered as a critical topic in intelligent transportation systems. Most existing learning methods mainly focus on isolated intersections and suffer from inefficient training. This paper aims at the cooperative control for large scale multi-intersection traffic signal, in which a novel end-to-end learning based model is established and the efficient training method is proposed correspondingly. In the proposed model, the input traffic status in multi-intersections is represented by a tensor, which not only significantly reduces dimensionality than using a single matrix but also avoids information loss. For the output, a multidimensional boolean vector is employed for the control policy to indicate whether the signal state changes or not, which simplifies the representation and abides the practical phase changing rules. In the proposed model, a multi-task learning structure is used to get the cooperative policy by learning. Instead of only using the reinforcement learning to train the model, we employ imitation learning to integrate a rule based model with neural networks to do the pre-training, which provides a reliable and satisfactory stage solution and greatly accelerates the convergence. Afterwards, the reinforcement learning method is adopted to continue the fine training, where proximal policy optimization algorithm is incorporated to solve the policy collapse problem in multi-dimensional output situation. In numerical experiments, the advantages of the proposed model are demonstrated with comparison to the related state-of-the-art methods.
Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is oft en difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.
96 - Yanan Wang , Tong Xu , Xin Niu 2019
The development of intelligent traffic light control systems is essential for smart transportation management. While some efforts have been made to optimize the use of individual traffic lights in an isolated way, related studies have largely ignored the fact that the use of multi-intersection traffic lights is spatially influenced and there is a temporal dependency of historical traffic status for current traffic light control. To that end, in this paper, we propose a novel SpatioTemporal Multi-Agent Reinforcement Learning (STMARL) framework for effectively capturing the spatio-temporal dependency of multiple related traffic lights and control these traffic lights in a coordinating way. Specifically, we first construct the traffic light adjacency graph based on the spatial structure among traffic lights. Then, historical traffic records will be integrated with current traffic status via Recurrent Neural Network structure. Moreover, based on the temporally-dependent traffic information, we design a Graph Neural Network based model to represent relationships among multiple traffic lights, and the decision for each traffic light will be made in a distributed way by the deep Q-learning method. Finally, the experimental results on both synthetic and real-world data have demonstrated the effectiveness of our STMARL framework, which also provides an insightful understanding of the influence mechanism among multi-intersection traffic lights.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا