ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of urban structure on COVID-19 spread

159   0   0.0 ( 0 )
 نشر من قبل Sandro Meloni
 تاريخ النشر 2020
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ongoing COVID-19 pandemic has created a global crisis of massive scale. Prior research indicates that human mobility is one of the key factors involved in viral spreading. Indeed, in a connected planet, rapid world-wide spread is enabled by long-distance air-, land- and sea-transportation among countries and continents, and subsequently fostered by commuting trips within densely populated cities. While early travel restrictions contribute to delayed disease spread, their utility is much reduced if the disease has a long incubation period or if there is asymptomatic transmission. Given the lack of vaccines, public health officials have mainly relied on non-pharmaceutical interventions, including social distancing measures, curfews, and stay-at-home orders. Here we study the impact of city organization on its susceptibility to disease spread, and amenability to interventions. Cities can be classified according to their mobility in a spectrum between compact-hierarchical and decentralized-sprawled. Our results show that even though hierarchical cities are more susceptible to the rapid spread of epidemics, their organization makes mobility restrictions quite effective. Conversely, sprawled cities are characterized by a much slower initial spread, but are less responsive to mobility restrictions. These findings hold globally across cities in diverse geographical locations and a broad range of sizes. Our empirical measurements are confirmed by a simulation of COVID-19 spread in urban areas through a compartmental model. These results suggest that investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove most helpful in containing and reducing the impact of present and future pandemics.



قيم البحث

اقرأ أيضاً

143 - Xinyu Gao , Chao Fan , Yang Yang 2020
The spread of pandemics such as COVID-19 is strongly linked to human activities. The objective of this paper is to specify and examine early indicators of disease spread risk in cities during the initial stages of outbreak based on patterns of human activities obtained from digital trace data. In this study, the Venables distance (D_v), and the activity density (D_a) are used to quantify and evaluate human activities for 193 US counties, whose cumulative number of confirmed cases was greater than 100 as of March 31, 2020. Venables distance provides a measure of the agglomeration of the level of human activities based on the average distance of human activities across a city or a county (less distance could lead to a greater contact risk). Activity density provides a measure of level of overall activity level in a county or a city (more activity could lead to a greater risk). Accordingly, Pearson correlation analysis is used to examine the relationship between the two human activity indicators and the basic reproduction number in the following weeks. The results show statistically significant correlations between the indicators of human activities and the basic reproduction number in all counties, as well as a significant leader-follower relationship (time lag) between them. The results also show one to two weeks lag between the change in activity indicators and the decrease in the basic reproduction number. This result implies that the human activity indicators provide effective early indicators for the spread risk of the pandemic during the early stages of the outbreak. Hence, the results could be used by the authorities to proactively assess the risk of disease spread by monitoring the daily Venables distance and activity density in a proactive manner.
Measuring traffic performance is critical for public agencies who manage traffic and individuals who plan trips, especially when special events happen. The COVID-19 pandemic has significantly influenced almost every aspect of daily life, including ur ban traffic patterns. Thus, it is important to measure the impact of COVID-19 on transportation to further guide agencies and residents to properly respond to changes in traffic patterns. However, most existing traffic performance metrics incorporate only a single traffic parameter and measure only the performance of individual corridors. To overcome these challenges, in this study, a Traffic Performance Score (TPS) is proposed that incorporates multiple parameters for measuring network-wide traffic performance. An interactive web-based TPS platform that provides real-time and historical spatial-temporal traffic performance analysis is developed by the STAR Lab at the University of Washington. Based on data from this platform, this study analyzes the impact of COVID-19 on different road segments and the traffic network as a whole. Considering this pandemic has greatly reshaped social and economic operations, this study also evaluates how COVID-19 is changing the urban mobility from both travel demand and driving behavior perspectives.
The new coronavirus known as COVID-19 is spread world-wide since December 2019. Without any vaccination or medicine, the means of controlling it are limited to quarantine and social distancing. Here we study the spatio-temporal propagation of the fir st wave of the COVID-19 virus in China and compare it to other global locations. We provide a comprehensive picture of the spatial propagation from Hubei to other provinces in China in terms of distance, population size, and human mobility and their scaling relations. Since strict quarantine has been usually applied between cities, more insight about the temporal evolution of the disease can be obtained by analyzing the epidemic within cities, especially the time evolution of the infection, death, and recovery rates which affected by policies. We study and compare the infection rate in different cities in China and provinces in Italy and find that the disease spread is characterized by a two-stages process. At early times, at order of few days, the infection rate is close to a constant probably due to the lack of means to detect infected individuals before infection symptoms are observed. Then at later times it decays approximately exponentially due to quarantines. The time evolution of the death and recovery rates also distinguish between these two stages and reflect the health system situation which could be overloaded.
In 2020, the COVID-19 pandemic spreads all over the world. In order to alleviate the spread of the epidemic, various blockade policies have been implemented in many areas. In order to formulate a better epidemic prevention policy for urban energy con sumption of the commercial tourism cities, this paper first analyses the energy characteristics of Macao during the epidemic period from two aspects, based on the energy consumption data of Macao. On this basis, the power consumption characteristics of commercial tourism cities during the epidemic were analyzed. Then, this paper provides analysis of the characteristics of the energy consumption in different fields of commercial tourism cities from the aspects of hotel, transportation, tourism culture and public utilities. Finally, a detailed analysis of the energy consumption characteristics of commercial tourism cities represented by Macao during the epidemic period is provided, by comparing with some typical countries.
In this study, we develop the mathematical model to understand the coupling between the spreading dynamics of infectious diseases and the mobility dynamics through urban transportation systems. We first describe the mobility dynamics of the urban pop ulation as the process of leaving from home, traveling to and from the activity locations, and engaging in activities. We then embed the susceptible-exposed-infectious-recovered (SEIR) process over the mobility dynamics and develops the spatial SEIR model with travel contagion (Trans-SEIR), which explicitly accounts for contagions both during travel and during daily activities. We investigate the theoretical properties of the proposed model and show how activity contagion and travel contagion contribute to the average number of secondary infections. In the numerical experiments, we explore how the urban transportation system may alter the fundamental dynamics of the infectious disease, change the number of secondary infections, promote the synchronization of the disease across the city, and affect the peak of the disease outbreaks. The Trans-SEIR model is further applied to the understand the disease dynamics during the COVID-19 outbreak in New York City, where we show how the activity and travel contagion may be distributed and how effective travel control can be implemented with only limited resources. The Trans-SEIR model along with the findings in our study may have significant contributions to improving our understanding of the coupling between urban transportation and disease dynamics, the development of quarantine and control measures of disease system, and promoting the idea of disease-resilient urban transportation networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا