ترغب بنشر مسار تعليمي؟ اضغط هنا

Pareto-Optimal Domino-Tiling of Orthogonal Polygon Phased Arrays

105   0   0.0 ( 0 )
 نشر من قبل Nicola Anselmi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The modular design of planar phased arrays arranged on orthogonal polygon-shaped apertures is addressed and a new method is proposed to synthesize domino-tiled arrays fitting multiple, generally conflicting, requirements. Starting from an analytic procedure to check the domino-tileability of the aperture, two multi-objective optimization techniques are derived to efficiently and effectively deal with small and medium/large arrays depending on the values of the bounds for the cardinality of the solution space of the admissible clustered solutions. A set of representative numerical examples is reported to assess the effectiveness of the proposed synthesis approach also through full-wave simulations when considering non-ideal models for the radiating elements of the array.



قيم البحث

اقرأ أيضاً

84 - P. Rocca , N. Anselmi , A. Polo 2021
The design of isophoric phased arrays composed of two-sized square-shaped tiles that fully cover rectangular apertures is dealt with. The number and the positions of the tiles within the array aperture are optimized to fit desired specifications on t he power pattern features. Toward this end, starting from the derivation of theoretical conditions for the complete tileability of the aperture, an ad hoc coding of the admissible arrangements, which implies a drastic reduction of the cardinality of the solution space, and their compact representation with a graph are exploited to profitably apply an effective optimizer based on an integer-coded genetic algorithm. A set of representative numerical examples, concerned with state-of-the-art benchmark problems, is reported and discussed to give some insights on the effectiveness of both the proposed tiled architectures and the synthesis strategy.
237 - Nathan Dostart 2020
Optical phased arrays (OPAs) which beam-steer in 2D have so far been unable to pack emitting elements at $lambda/2$ spacing, leading to grating lobes which limit the field-of-view, introduce signal ambiguity, and reduce optical efficiency. Vernier sc hemes, which use paired transmitter and receiver phased arrays with different periodicity, deliberately misalign the transmission and receive patterns so that only a single pairing of transmit/receive lobes permit a signal to be detected. A pair of OPAs designed to exploit this effect thereby effectively suppress the effects of grating lobes and recover the systems field-of-view, avoid potential ambiguities, and reduce excess noise. Here we analytically evaluate Vernier schemes with arbitrary phase control to find optimal configurations, as well as elucidate the manner in which a Vernier scheme can recover the full field-of-view. We present the first experimental implementation of a Vernier scheme and demonstrate grating lobe suppression using a pair of 2D wavelength-steered OPAs. These results present a route forward for addressing the pervasive issue of grating lobes, significantly alleviating the need for dense emitter pitches.
This paper studies an unmanned aerial vehicle (UAV)-assisted wireless network, where a UAV is dispatched to gather information from ground sensor nodes (SN) and transfer the collected data to the depot. The information freshness is captured by the ag e of information (AoI) metric, whilst the energy consumption of the UAV is seen as another performance criterion. Most importantly, the AoI and energy efficiency are inherently competing metrics, since decreasing the AoI requires the UAV returning to the depot more frequently, leading to a higher energy consumption. To this end, we design UAV paths that optimize these two competing metrics and reveal the Pareto frontier. To formulate this problem, a multi-objective mixed integer linear programming (MILP) is proposed with a flow-based constraint set and we apply Benders decomposition on the proposed formulation. The overall outcome shows that the proposed method allows deriving non-dominated solutions for decision making for UAV based wireless data collection. Numerical results are provided to corroborate our study by presenting the Pareto front of the two objectives and the effect on the UAV trajectory.
The optimal design of aperiodic/irregular clustered phased arrays for base stations (BSs) in multi-user multiple-input multiple-output (MU-MIMO) communication systems is addressed. The paper proposes an ad-hoc synthesis method aimed at maximizing the users traffic capacity within the cell served by the BS, while guaranteeing the sufficient level of signal at the terminals. Towards this end, the search of the optimal aperiodic clustering is carried out through a customized tiling technique able to consider both single and multiple tile shapes as well as to assure the complete coverage of the antenna aperture for the maximization of the directivity. Representative results, from a wide set of numerical examples concerned with realistic antenna models and benchmark 3GPP scenarios, are reported to assess the advantages of the irregular array architectures in comparison with regular/periodic layouts proposed by the standard development organizations, as well.
67 - P. Rocca , L. Poli , A. Polo 2021
The design of phased arrays able to generate arbitrary-shaped beams through a sub-arrayed architecture is addressed here. The synthesis problem is cast in the excitation matching framework, so as to yield clustered phased arrays providing optimal tra de-offs between the complexity of the array architecture (i.e., the minimum number of control points at the sub-array level) and the matching of a reference pattern. A synthesis tool based on the k-means algorithm is proposed for jointly optimizing the sub-array configuration and the complex sub-array coefficients. Selected numerical results, including pencil beams with sidelobe notches and asymmetric lobes as well as shaped main lobes, are reported and discussed to highlight the peculiarities of the proposed approach also in comparison with some extensions to complex excitations of state-of-the-art sub-array design methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا