ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Capacity-Driven Design of Aperiodic Clustered Phased Arrays for Multi-User MIMO Communication Systems

174   0   0.0 ( 0 )
 نشر من قبل Nicola Anselmi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The optimal design of aperiodic/irregular clustered phased arrays for base stations (BSs) in multi-user multiple-input multiple-output (MU-MIMO) communication systems is addressed. The paper proposes an ad-hoc synthesis method aimed at maximizing the users traffic capacity within the cell served by the BS, while guaranteeing the sufficient level of signal at the terminals. Towards this end, the search of the optimal aperiodic clustering is carried out through a customized tiling technique able to consider both single and multiple tile shapes as well as to assure the complete coverage of the antenna aperture for the maximization of the directivity. Representative results, from a wide set of numerical examples concerned with realistic antenna models and benchmark 3GPP scenarios, are reported to assess the advantages of the irregular array architectures in comparison with regular/periodic layouts proposed by the standard development organizations, as well.

قيم البحث

اقرأ أيضاً

In this paper, we study Simultaneous Communication of Data and Control (SCDC) information signals in Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) wireless systems. In particular, considering an FD MIMO base station serving multiple single-a ntenna FD users, a novel multi-user communication scheme for simultaneous DownLink (DL) beamformed data transmission and UpLink (UL) pilot-assisted channel estimation is presented. Capitalizing on a recent FD MIMO hardware architecture with reduced complexity self-interference analog cancellation, we jointly design the base stations transmit and receive beamforming matrices as well as the settings for the multiple analog taps and the digital SI canceller with the objective to maximize the DL sum rate. Our simulation results showcase that the proposed approach outperforms its conventional half duplex counterpart with 50% reduction in hardware complexity compared to the latest FD-based SCDC schemes.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
This paper introduces a novel approach of utilizing the reconfigurable intelligent surface (RIS) for joint data modulation and signal beamforming in a multi-user downlink cellular network by leveraging the idea of backscatter communication. We presen t a general framework in which the RIS, referred to as modulating intelligent surface (MIS) in this paper, is used to: i) beamform the signals for a set of users whose data modulation is already performed by the base station (BS), and at the same time, ii) embed the data of a different set of users by passively modulating the deliberately sent carrier signals from the BS to the RIS. To maximize each users spectral efficiency, a joint non-convex optimization problem is formulated under the sum minimum mean-square error (MMSE) criterion. Alternating optimization is used to divide the original joint problem into two tasks of: i) separately optimizing the MIS phase-shifts for passive beamforming along with data embedding for the BS- and MIS-served users, respectively, and ii) jointly optimizing the active precoder and the receive scaling factor for the BS- and MIS-served users, respectively. While the solution to the latter joint problem is found in closed-form using traditional optimization techniques, the optimal phase-shifts at the MIS are obtained by deriving the appropriate optimization-oriented vector approximate message passing (OOVAMP) algorithm. Moreover, the original joint problem is solved under both ideal and practical constraints on the MIS phase shifts, namely, the unimodular constraint and assuming each MIS element to be terminated by a variable reactive load. The proposed MIS-assisted scheme is compared against state-of-the-art RIS-assisted wireless communication schemes and simulation results reveal that it brings substantial improvements in terms of system throughput while supporting a much higher number of users.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix , and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.
The problem of transmitting a common message to multiple users over the Gaussian multiple-input multiple-output broadcast channel is considered, where each user is equipped with an arbitrary number of antennas. A closed-loop scenario is assumed, for which a practical capacity-approaching scheme is developed. By applying judiciously chosen unitary operations at the transmit and receive nodes, the channel matrices are triangularized so that the resulting matrices have equal diagonals, up to a possible multiplicative scalar factor. This, along with the utilization of successive interference cancellation, reduces the coding and decoding tasks to those of coding and decoding over the single-antenna additive white Gaussian noise channel. Over the resulting effective channel, any off-the-shelf code may be used. For the two-user case, it was recently shown that such joint unitary triangularization is always possible. In this paper, it is shown that for more than two users, it is necessary to carry out the unitary linear processing jointly over multiple channel uses, i.e., space-time processing is employed. It is further shown that exact triangularization, where all resulting diagonals are equal, is still not always possible, and appropriate conditions for the existence of such are established for certain cases. When exact triangularization is not possible, an asymptotic construction is proposed, that achieves the desired property of equal diagonals up to edge effects that can be made arbitrarily small, at the price of processing a sufficiently large number of channel uses together.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا