ترغب بنشر مسار تعليمي؟ اضغط هنا

A major asymmetric ice trap in a planet-forming disk: II. prominent SO and SO2 pointing to C/O < 1

64   0   0.0 ( 0 )
 نشر من قبل Alice S. Booth
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A.S. Booth




اسأل ChatGPT حول البحث

Gas-phase sulphur bearing volatiles appear to be severely depleted in protoplanetary disks. The detection of CS and non-detections of SO and SO2 in many disks have shown that the gas in the warm molecular layer, where giant planets accrete their atmospheres, has a high C/O ratio. In this letter, we report the detection of SO and SO2 in the Oph-IRS 48 disk using ALMA. This is the first case of prominent SO2 emission detected from a protoplanetary disk. The molecular emissions of both molecules is spatially correlated with the asymmetric dust trap. We propose that this is due to the sublimation of ices at the edge of the dust cavity and that the bulk of the ice reservoir is coincident with the millimetre dust grains. Depending on the partition of elemental sulphur between refractory and volatile materials the observed molecules can account for 15-100% of the total sulphur budget in the disk. In strong contrast to previous results, we constrain the C/O ratio from the CS/SO ratio to be < 1 and potentially solar. This has important implications for the elemental composition of planets forming within the cavities of warm transition disks.

قيم البحث

اقرأ أيضاً

643 - N. van der Marel 2021
The chemistry of planet-forming disks sets the exoplanet atmosphere composition and the prebiotic molecular content. Dust traps are of particular importance as pebble growth and transport are crucial for setting the chemistry where giant planets are forming. The asymmetric Oph~IRS~48 dust trap located at 60 au radius provides a unique laboratory for studying chemistry in pebble-concentrated environments in warm Herbig disks with low gas-to-dust ratios down to 0.01. We use deep ALMA Band~7 line observations to search the IRS~48 disk for H$_2$CO and CH$_3$OH line emission, the first steps of complex organic chemistry. We report the detection of 7 H$_2$CO and 6 CH$_3$OH lines with energy levels between 17 and 260 K. The line emission shows a crescent morphology, similar to the dust continuum, suggesting that the icy pebbles play an important role in the delivery of these molecules. Rotational diagrams and line ratios indicate that both molecules originate from warm molecular regions in the disk with temperatures $>$100 K and column densities $sim10^{14}$ cm$^{-2}$ or a fractional abundance of $sim10^{-8}$ and with H$_2$CO/CH$_3$OH$sim$0.2, indicative of ice chemistry. Based on arguments from a physical-chemical model with low gas-to-dust ratios, we propose a scenario where the dust trap provides a huge icy grain reservoir in the disk midplane or an `ice trap, which can result in high gas-phase abundances of warm COMs through efficient vertical mixing. This is the first time that complex organic molecules have been clearly linked to the presence of a dust trap. These results demonstrate the importance of including dust evolution and vertical transport in chemical disk models, as icy dust concentrations provide important reservoirs for complex organic chemistry in disks.
The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter-wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.
The elemental composition of the gas and dust in a protoplanetary disk influences the compositions of the planets that form in it. We use the Molecules with ALMA at Planet-forming Scales (MAPS) data to constrain the elemental composition of the gas a t the locations of potentially forming planets. The elemental abundances are inferred by comparing source-specific gas-grain thermochemical models, with variable C/O ratios and small-grain abundances, from the DALI code with CO and C2H column densities derived from the high-resolution observations of the disks of AS 209, HD 163296, and MWC 480. Elevated C/O ratios (~2.0), even within the CO ice line, are necessary to match the inferred C2H column densities, over most of the pebble disk. Combined with constraints on the CO abundances in these systems, this implies that both the O/H and C/H ratios in the gas are substellar by a factor of 4-10, with the O/H depleted by a factor of 20-50, resulting in the high C/O ratios. This necessitates that even within the CO ice line, most of the volatile carbon and oxygen is still trapped on grains in the midplane. Planets accreting gas in the gaps of the AS 209, HD 163296, and MWC 480 disks will thus acquire very little carbon and oxygen after reaching the pebble isolation mass. In the absence of atmosphere-enriching events, these planets would thus have a strongly substellar O/H and C/H and superstellar C/O atmospheric composition.
We investigate the impact of pre-main sequence stellar luminosity evolution on the thermal and chemical properties of disc midplanes. We create template disc models exemplifying initial conditions for giant planet formation for a variety of stellar m asses and ages. These models include the 2D physical structure of gas as well as 1D chemical structure in the disc midplane. The disc temperature profiles are calculated using fully physically consistent radiative transfer models for stars between 0.5 and 3 Msun and ages up to 10 Myr. The resulting temperature profiles are used to determine how the chemical conditions in the mid-plane change over time. We therefore obtain gas and ice-phase abundances of the main carbon and oxygen carrier species. While the temperature profiles produced are not markedly different for the stars of different masses at early stages (<1 Myr), they start to diverge significantly beyond 2 Myr. Discs around stars with mass >1.5 Msun become warmer over time as the stellar luminosity increases, whereas low-mass stars decrease in luminosity leading to cooler discs. This has an observable effect on the location of the CO snowline, which is located >200 au in most models for a 3 Msun star, but is always within 80 au for 0.5 Msun star. The chemical compositions calculated show that a well defined stellar mass and age range exists in which high C/O gas giants can form. In the case of the exoplanet HR8799b, our models show it must have formed before the star was 1 Myr old.
Young transiting exoplanets (< 100 Myr) provide crucial insight into atmospheric evolution via photoevaporation. However, transmission spectroscopy measurements to determine atmospheric composition and mass loss are challenging due to the activity an d prominent stellar disk inhomogeneities present on young stars. We observed a full transit of V1298 Tau c, a 23 Myr, 5.59$R_oplus$ planet orbiting a young K0-K1.5 solar analogue with GRACES on Gemini-North. We were able to measure the Doppler tomographic signal of V1298 Tau c using the Ca II infrared triplet (IRT) and find a projected obliquity of $lambda = 5^circ pm 15^circ$. The tomographic signal is only seen in the chromospherically driven core of the Ca II IRT, which may be the result of star-planet interactions. Additionally, we find that excess absorption of the H-alpha line decreases smoothly during the transit. While this could be a tentative detection of hot gas escaping the planet, we find this variation is consistent with similar timescale observations of other young stars that lack transiting planets over similar timescales. We show this variation can also be explained by the presence of starspots with surrounding facular regions. More observations both in- and out-of the transits of V1298 Tau c are required to determine the nature of the Ca II IRT and H-alpha line variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا