ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecules with ALMA at Planet-forming Scales (MAPS). VII. Sub-stellar O/H and C/H and super-stellar C/O in planet feeding gas

68   0   0.0 ( 0 )
 نشر من قبل Arthur Bosman
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The elemental composition of the gas and dust in a protoplanetary disk influences the compositions of the planets that form in it. We use the Molecules with ALMA at Planet-forming Scales (MAPS) data to constrain the elemental composition of the gas at the locations of potentially forming planets. The elemental abundances are inferred by comparing source-specific gas-grain thermochemical models, with variable C/O ratios and small-grain abundances, from the DALI code with CO and C2H column densities derived from the high-resolution observations of the disks of AS 209, HD 163296, and MWC 480. Elevated C/O ratios (~2.0), even within the CO ice line, are necessary to match the inferred C2H column densities, over most of the pebble disk. Combined with constraints on the CO abundances in these systems, this implies that both the O/H and C/H ratios in the gas are substellar by a factor of 4-10, with the O/H depleted by a factor of 20-50, resulting in the high C/O ratios. This necessitates that even within the CO ice line, most of the volatile carbon and oxygen is still trapped on grains in the midplane. Planets accreting gas in the gaps of the AS 209, HD 163296, and MWC 480 disks will thus acquire very little carbon and oxygen after reaching the pebble isolation mass. In the absence of atmosphere-enriching events, these planets would thus have a strongly substellar O/H and C/H and superstellar C/O atmospheric composition.



قيم البحث

اقرأ أيضاً

Sulfur-bearing molecules play an important role in prebiotic chemistry and planet habitability. They are also proposed probes of chemical ages, elemental C/O ratio, and grain chemistry processing. Commonly detected in diverse astrophysical objects, i ncluding the Solar System, their distribution and chemistry remain, however, largely unknown in planet-forming disks. We present CS ($2-1$) observations at $sim0.3$ resolution performed within the ALMA-MAPS Large Program toward the five disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. CS is detected in all five disks, displaying a variety of radial intensity profiles and spatial distributions across the sample, including intriguing apparent azimuthal asymmetries. Transitions of C$_2$S and SO were also serendipitously covered but only upper limits are found. For MWC 480, we present complementary ALMA observations at $sim0.5$, of CS, $^{13}$CS, C$^{34}$S, H$_2$CS, OCS, and SO$_2$. We find a column density ratio N(H$_{2}$CS)/N(CS)$sim2/3$, suggesting that a substantial part of the sulfur reservoir in disks is in organic form (i.e., C$_x$H$_y$S$_z$). Using astrochemical disk modeling tuned to MWC 480, we demonstrate that $N$(CS)/$N$(SO) is a promising probe for the elemental C/O ratio. The comparison with the observations provides a super-solar C/O. We also find a depleted gas-phase S/H ratio, suggesting either that part of the sulfur reservoir is locked in solid phase or that it remains in an unidentified gas-phase reservoir. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Here we present high resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs $^{13}$CO and C$^{18}$O ($J$=2-1), (1-0), and C$^{17}$O (1-0) line observations of five protoplanetary disks. We retrieve CO gas density distributions, using three independent methods: (1) a thermo-chemical modeling framework based on the CO data, the broadband spectral energy distribution, and the mm-continuum emission; (2) an empirical temperature distribution based on optically thick CO lines; and (3) a direct fit to the C$^{17}$O hyperfine lines. Results from these methods generally show excellent agreement. The CO gas column density profiles of the five disks show significant variations in the absolute value and the radial shape. Assuming a gas-to-dust mass ratio of 100, all five disks have a global CO-to-H$_2$ abundance of 10-100 times lower than the ISM ratio. The CO gas distributions between 150-400 au match well with models of viscous disks, supporting the long-standing theory. CO gas gaps appear to be correlated with continuum gap locations, but some deep continuum gaps do not have corresponding CO gaps. The relative depths of CO and dust gaps are generally consistent with predictions of planet-disk interactions, but some CO gaps are 5-10 times shallower than predictions based on dust gaps. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
The precursors to larger, biologically-relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here we present 0.3 observations of HC$_3$N, CH$_3$CN, and $c$-C$_3$H$_2$ in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296 and MWC 480) with tentative detections of $c$-C$_3$H$_2$ and CH$_3$CN in IM Lup. We observe a range of morphologies -- central peaks, single or double rings -- with no clear correlation in morphology between molecule nor disk. Emission is generally compact and on scales comparable with the millimetre dust continuum. We perform both disk-integrated and radially-resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5-10 times more column density in the inner 50-100 au of the disks when compared with the disk-integrated analysis. We demonstrate that CH$_3$CN originates from lower relative heights in the disks when compared with HC$_3$N, in some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own Solar System. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement Series.
Planets form and obtain their compositions in dust and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental composi tions of planets, including C/N/O/S ratios and metallicity (O/H and C/H), as well as access to water and prebiotically relevant organics. Emission from molecules also encodes information on disk ionization levels, temperature structures, kinematics, and gas surface densities, which are all key ingredients of disk evolution and planet formation models. The Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program was designed to expand our understanding of the chemistry of planet formation by exploring disk chemical structures down to 10 au scales. The MAPS program focuses on five disks - around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480 - in which dust substructures are detected and planet formation appears to be ongoing. We observed these disks in 4 spectral setups, which together cover ~50 lines from over 20 different species. This paper introduces the ApJS MAPS Special Issue by presenting an overview of the program motivation, disk sample, observational details, and calibration strategy. We also highlight key results, including discoveries of links between dust, gas, and chemical sub-structures, large reservoirs of nitriles and other organics in the inner disk regions, and elevated C/O ratios across most disks. We discuss how this collection of results is reshaping our view of the chemistry of planet formation.
Small organic molecules, such as C2H, HCN, and H2CO, are tracers of the C, N, and O budget in protoplanetary disks. We present high angular resolution (10-50 au) observations of C2H, HCN, and H2CO lines in five protoplanetary disks from the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program. We derive column density and excitation temperature profiles for HCN and C2H, and find that the HCN emission arises in a temperate (20-30 K) layer in the disk, while C2H is present in relatively warmer (20-60 K) layers. In the case of HD 163296, we find a decrease in column density for HCN and C2H inside one of the dust gaps near 83 au, where a planet has been proposed to be located. We derive H2CO column density profiles assuming temperatures between 20 and 50 K, and find slightly higher column densities in the colder disks around T Tauri stars than around Herbig Ae stars. The H2CO column densities rise near the location of the CO snowline and/or millimeter dust edge, suggesting an efficient release of H2CO ices in the outer disk. Finally, we find that the inner 50 au of these disks are rich in organic species, with abundances relative to water that are similar to cometary values. Comets could therefore deliver water and key organics to future planets in these disks, similar to what might have happened here on Earth. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا