ﻻ يوجد ملخص باللغة العربية
Young transiting exoplanets (< 100 Myr) provide crucial insight into atmospheric evolution via photoevaporation. However, transmission spectroscopy measurements to determine atmospheric composition and mass loss are challenging due to the activity and prominent stellar disk inhomogeneities present on young stars. We observed a full transit of V1298 Tau c, a 23 Myr, 5.59$R_oplus$ planet orbiting a young K0-K1.5 solar analogue with GRACES on Gemini-North. We were able to measure the Doppler tomographic signal of V1298 Tau c using the Ca II infrared triplet (IRT) and find a projected obliquity of $lambda = 5^circ pm 15^circ$. The tomographic signal is only seen in the chromospherically driven core of the Ca II IRT, which may be the result of star-planet interactions. Additionally, we find that excess absorption of the H-alpha line decreases smoothly during the transit. While this could be a tentative detection of hot gas escaping the planet, we find this variation is consistent with similar timescale observations of other young stars that lack transiting planets over similar timescales. We show this variation can also be explained by the presence of starspots with surrounding facular regions. More observations both in- and out-of the transits of V1298 Tau c are required to determine the nature of the Ca II IRT and H-alpha line variations.
The 23 Myr system V1298 Tau hosts four transiting planets and is a valuable laboratory for exploring the early stages of planet evolution soon after formation of the star. We observe the innermost planet, V1298 Tau c, during transit using LBT PEPSI t
We report the detection of V1298 Tau b, a warm Jupiter-sized planet ($R_P$ = 0.91 $pm$ 0.05~ $R_mathrm{Jup}$, $P = 24.1$ days) transiting a young solar analog with an estimated age of 23 million years. The star and its planet belong to Group 29, a yo
It has been shown recently that the infrared emission of Cepheids, which is constant over the pulsation cycle, might be due to a pulsating shell of ionized gas of about 15% of the stellar radius, which could be attributed to the chromospheric activit
Exoplanets orbiting pre-main sequence stars are laboratories for studying planet evolution processes, including atmospheric loss, orbital migration, and radiative cooling. V1298 Tau, a young solar analog with an age of 23 $pm$ 4 Myr, is one such labo
Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations