ترغب بنشر مسار تعليمي؟ اضغط هنا

SimCSE: Simple Contrastive Learning of Sentence Embeddings

364   0   0.0 ( 0 )
 نشر من قبل Tianyu Gao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objective, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework, by using entailment pairs as positives and contradiction pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearmans correlation respectively, a 4.2% and 2.2% improvement compared to previous best results. We also show -- both theoretically and empirically -- that contrastive learning objective regularizes pre-trained embeddings anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.

قيم البحث

اقرأ أيضاً

Many recent successes in sentence representation learning have been achieved by simply fine-tuning on the Natural Language Inference (NLI) datasets with triplet loss or siamese loss. Nevertheless, they share a common weakness: sentences in a contradi ction pair are not necessarily from different semantic categories. Therefore, optimizing the semantic entailment and contradiction reasoning objective alone is inadequate to capture the high-level semantic structure. The drawback is compounded by the fact that the vanilla siamese or triplet losses only learn from individual sentence pairs or triplets, which often suffer from bad local optima. In this paper, we propose PairSupCon, an instance discrimination based approach aiming to bridge semantic entailment and contradiction understanding with high-level categorical concept encoding. We evaluate PairSupCon on various downstream tasks that involve understanding sentence semantics at different granularities. We outperform the previous state-of-the-art method with $10%$--$13%$ averaged improvement on eight clustering tasks, and $5%$--$6%$ averaged improvement on seven semantic textual similarity (STS) tasks.
Pre-trained language models have proven their unique powers in capturing implicit language features. However, most pre-training approaches focus on the word-level training objective, while sentence-level objectives are rarely studied. In this paper, we propose Contrastive LEArning for sentence Representation (CLEAR), which employs multiple sentence-level augmentation strategies in order to learn a noise-invariant sentence representation. These augmentations include word and span deletion, reordering, and substitution. Furthermore, we investigate the key reasons that make contrastive learning effective through numerous experiments. We observe that different sentence augmentations during pre-training lead to different performance improvements on various downstream tasks. Our approach is shown to outperform multiple existing methods on both SentEval and GLUE benchmarks.
Contrastive learning has been gradually applied to learn high-quality unsupervised sentence embedding. Among the previous un-supervised methods, the latest state-of-the-art method, as far as we know, is unsupervised SimCSE (unsup-SimCSE). Unsup-SimCS E uses the InfoNCE1loss function in the training stage by pulling semantically similar sentences together and pushing apart dis-similar ones.Theoretically, we expect to use larger batches in unsup-SimCSE to get more adequate comparisons among samples and avoid overfitting. However, increasing the batch size does not always lead to improvements, but instead even lead to performance degradation when the batch size exceeds a threshold. Through statistical observation, we find that this is probably due to the introduction of low-confidence negative pairs after in-creasing the batch size. To alleviate this problem, we introduce a simple smoothing strategy upon the InfoNCE loss function, termedGaussian Smoothing InfoNCE (GS-InfoNCE).Specifically, we add random Gaussian noise vectors as negative samples, which act asa smoothing of the negative sample space.Though being simple, the proposed smooth-ing strategy brings substantial improvements to unsup-SimCSE. We evaluate GS-InfoNCEon the standard semantic text similarity (STS)task. GS-InfoNCE outperforms the state-of-the-art unsup-SimCSE by an average Spear-man correlation of 1.38%, 0.72%, 1.17% and0.28% on the base of BERT-base, BERT-large,RoBERTa-base and RoBERTa-large, respectively.
Although BERT and its variants have reshaped the NLP landscape, it still remains unclear how best to derive sentence embeddings from such pre-trained Transformers. In this work, we propose a contrastive learning method that utilizes self-guidance for improving the quality of BERT sentence representations. Our method fine-tunes BERT in a self-supervised fashion, does not rely on data augmentation, and enables the usual [CLS] token embeddings to function as sentence vectors. Moreover, we redesign the contrastive learning objective (NT-Xent) and apply it to sentence representation learning. We demonstrate with extensive experiments that our approach is more effective than competitive baselines on diverse sentence-related tasks. We also show it is efficient at inference and robust to domain shifts.
We present a novel and effective technique for performing text coherence tasks while facilitating deeper insights into the data. Despite obtaining ever-increasing task performance, modern deep-learning approaches to NLP tasks often only provide users with the final network decision and no additional understanding of the data. In this work, we show that a new type of sentence embedding learned through self-supervision can be applied effectively to text coherence tasks while serving as a window through which deeper understanding of the data can be obtained. To produce these sentence embeddings, we train a recurrent neural network to take individual sentences and predict their location in a document in the form of a distribution over locations. We demonstrate that these embeddings, combined with simple visual heuristics, can be used to achieve performance competitive with state-of-the-art on multiple text coherence tasks, outperforming more complex and specialized approaches. Additionally, we demonstrate that these embeddings can provide insights useful to writers for improving writing quality and informing document structuring, and assisting readers in summarizing and locating information.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا