ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Sentence Embeddings for Coherence Modelling and Beyond

67   0   0.0 ( 0 )
 نشر من قبل Tanner Bohn
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel and effective technique for performing text coherence tasks while facilitating deeper insights into the data. Despite obtaining ever-increasing task performance, modern deep-learning approaches to NLP tasks often only provide users with the final network decision and no additional understanding of the data. In this work, we show that a new type of sentence embedding learned through self-supervision can be applied effectively to text coherence tasks while serving as a window through which deeper understanding of the data can be obtained. To produce these sentence embeddings, we train a recurrent neural network to take individual sentences and predict their location in a document in the form of a distribution over locations. We demonstrate that these embeddings, combined with simple visual heuristics, can be used to achieve performance competitive with state-of-the-art on multiple text coherence tasks, outperforming more complex and specialized approaches. Additionally, we demonstrate that these embeddings can provide insights useful to writers for improving writing quality and informing document structuring, and assisting readers in summarizing and locating information.



قيم البحث

اقرأ أيضاً

This paper presents SimCSE, a simple contrastive learning framework that greatly advances the state-of-the-art sentence embeddings. We first describe an unsupervised approach, which takes an input sentence and predicts itself in a contrastive objecti ve, with only standard dropout used as noise. This simple method works surprisingly well, performing on par with previous supervised counterparts. We find that dropout acts as minimal data augmentation and removing it leads to a representation collapse. Then, we propose a supervised approach, which incorporates annotated pairs from natural language inference datasets into our contrastive learning framework, by using entailment pairs as positives and contradiction pairs as hard negatives. We evaluate SimCSE on standard semantic textual similarity (STS) tasks, and our unsupervised and supervised models using BERT base achieve an average of 76.3% and 81.6% Spearmans correlation respectively, a 4.2% and 2.2% improvement compared to previous best results. We also show -- both theoretically and empirically -- that contrastive learning objective regularizes pre-trained embeddings anisotropic space to be more uniform, and it better aligns positive pairs when supervised signals are available.
This paper introduces a sentence to vector encoding framework suitable for advanced natural language processing. Our latent representation is shown to encode sentences with common semantic information with similar vector representations. The vector r epresentation is extracted from an encoder-decoder model which is trained on sentence paraphrase pairs. We demonstrate the application of the sentence representations for two different tasks -- sentence paraphrasing and paragraph summarization, making it attractive for commonly used recurrent frameworks that process text. Experimental results help gain insight how vector representations are suitable for advanced language embedding.
105 - Qingyu Chen , Yifan Peng , 2018
Sentence embeddings have become an essential part of todays natural language processing (NLP) systems, especially together advanced deep learning methods. Although pre-trained sentence encoders are available in the general domain, none exists for bio medical texts to date. In this work, we introduce BioSentVec: the first open set of sentence embeddings trained with over 30 million documents from both scholarly articles in PubMed and clinical notes in the MIMIC-III Clinical Database. We evaluate BioSentVec embeddings in two sentence pair similarity tasks in different text genres. Our benchmarking results demonstrate that the BioSentVec embeddings can better capture sentence semantics compared to the other competitive alternatives and achieve state-of-the-art performance in both tasks. We expect BioSentVec to facilitate the research and development in biomedical text mining and to complement the existing resources in biomedical word embeddings. BioSentVec is publicly available at https://github.com/ncbi-nlp/BioSentVec
An important challenge for human-like AI is compositional semantics. Recent research has attempted to address this by using deep neural networks to learn vector space embeddings of sentences, which then serve as input to other tasks. We present a new dataset for one such task, `natural language inference (NLI), that cannot be solved using only word-level knowledge and requires some compositionality. We find that the performance of state of the art sentence embeddings (InferSent; Conneau et al., 2017) on our new dataset is poor. We analyze the decision rules learned by InferSent and find that they are consistent with simple heuristics that are ecologically valid in its training dataset. Further, we find that augmenting training with our dataset improves test performance on our dataset without loss of performance on the original training dataset. This highlights the importance of structured datasets in better understanding and improving AI systems.
The recent tremendous success of unsupervised word embeddings in a multitude of applications raises the obvious question if similar methods could be derived to improve embeddings (i.e. semantic representations) of word sequences as well. We present a simple but efficient unsupervised objective to train distributed representations of sentences. Our method outperforms the state-of-the-art unsupervised models on most benchmark tasks, highlighting the robustness of the produced general-purpose sentence embeddings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا