ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the Complexity Analysis of Conflict-Based Search: New Computational Techniques and Improved Bounds

127   0   0.0 ( 0 )
 نشر من قبل Ofir Gordon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of Multi-Agent Path Finding (MAPF) calls for finding a set of conflict-free paths for a fleet of agents operating in a given environment. Arguably, the state-of-the-art approach to computing optimal solutions is Conflict-Based Search (CBS). In this work we revisit the complexity analysis of CBS to provide tighter bounds on the algorithms run-time in the worst-case. Our analysis paves the way to better pinpoint the parameters that govern (in the worst case) the algorithms computational complexity. Our analysis is based on two complementary approaches: In the first approach we bound the run-time using the size of a Multi-valued Decision Diagram (MDD) -- a layered graph which compactly contains all possible single-agent paths between two given vertices for a specific path length. In the second approach we express the running time by a novel recurrence relation which bounds the algorithms complexity. We use generating functions-based analysis in order to tightly bound the recurrence. Using these technique we provide several new upper-bounds on CBSs complexity. The results allow us to improve the existing bound on the running time of CBS for many cases. For example, on a set of common benchmarks we improve the upper-bound by a factor of at least $2^{10^{7}}$.



قيم البحث

اقرأ أيضاً

We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree t: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.
Itemset mining is one of the most studied tasks in knowledge discovery. In this paper we analyze the computational complexity of three central itemset mining problems. We prove that mining confident rules with a given item in the head is NP-hard. We prove that mining high utility itemsets is NP-hard. We finally prove that mining maximal or closed itemsets is coNP-hard as soon as the users can specify constraints on the kind of itemsets they are interested in.
When the users in a MIMO broadcast channel experience different spatial transmit correlation matrices, a class of gains is produced that is denoted transmit correlation diversity. This idea was conceived for channels in which transmit correlation mat rices have mutually exclusive eigenspaces, allowing non-interfering training and transmission. This paper broadens the scope of transmit correlation diversity to the case of partially and fully overlapping eigenspaces and introduces techniques to harvest these generalized gains. For the two-user MIMO broadcast channel, we derive achievable degrees of freedom (DoF) and achievable rate regions with/without channel state information at the receiver (CSIR). When CSIR is available, the proposed achievable DoF region is tight in some configurations of the number of receive antennas and the channel correlation ranks. We then extend the DoF results to the $K$-user case by analyzing the interference graph that characterizes the overlapping structure of the eigenspaces. Our achievability results employ a combination of product superposition in the common part of the eigenspaces, and pre-beamforming (rate splitting) to create multiple data streams in non-overlapping parts of the eigenspaces. Massive MIMO is a natural example in which spatially correlated link gains are likely to occur. We study the achievable downlink sum rate for a frequency-division duplex massive MIMO system under transmit correlation diversity.
146 - Shi-Xin Zhang 2019
In this note, we provide a unifying framework to investigate the computational complexity of classical spin models and give the full classification on spin models in terms of system dimensions, randomness, external magnetic fields and types of spin c oupling. We further discuss about the implications of NP-complete Hamiltonian models in physics and the fundamental limitations of all numerical methods imposed by such models. We conclude by a brief discussion on the picture when quantum computation and quantum complexity theory are included.
Participatory budgeting (PB) is a democratic process where citizens jointly decide on how to allocate public funds to indivisible projects. This paper focuses on PB processes where citizens may give additional money to projects they want to see funde d. We introduce a formal framework for this kind of PB with donations. Our framework also allows for diversity constraints, meaning that each project belongs to one or more types, and there are lower and upper bounds on the number of projects of the same type that can be funded. We propose three general classes of methods for aggregating the citizens preferences in the presence of donations and analyze their axiomatic properties. Furthermore, we investigate the computational complexity of determining the outcome of a PB process with donations and of finding a citizens optimal donation strategy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا