ترغب بنشر مسار تعليمي؟ اضغط هنا

Retrieve Fast, Rerank Smart: Cooperative and Joint Approaches for Improved Cross-Modal Retrieval

289   0   0.0 ( 0 )
 نشر من قبل Jonas Pfeiffer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Current state-of-the-art approaches to cross-modal retrieval process text and visual input jointly, relying on Transformer-based architectures with cross-attention mechanisms that attend over all words and objects in an image. While offering unmatched retrieval performance, such models: 1) are typically pretrained from scratch and thus less scalable, 2) suffer from huge retrieval latency and inefficiency issues, which makes them impractical in realistic applications. To address these crucial gaps towards both improved and efficient cross-modal retrieval, we propose a novel fine-tuning framework which turns any pretrained text-image multi-modal model into an efficient retrieval model. The framework is based on a cooperative retrieve-and-rerank approach which combines: 1) twin networks to separately encode all items of a corpus, enabling efficient initial retrieval, and 2) a cross-encoder component for a more nuanced (i.e., smarter) ranking of the retrieved small set of items. We also propose to jointly fine-tune the two components with shared weights, yielding a more parameter-efficient model. Our experiments on a series of standard cross-modal retrieval benchmarks in monolingual, multilingual, and zero-shot setups, demonstrate improved accuracy and huge efficiency benefits over the state-of-the-art cross-encoders.



قيم البحث

اقرأ أيضاً

Recent advances in using retrieval components over external knowledge sources have shown impressive results for a variety of downstream tasks in natural language processing. Here, we explore the use of unstructured external knowledge sources of image s and their corresponding captions for improving visual question answering (VQA). First, we train a novel alignment model for embedding images and captions in the same space, which achieves substantial improvement in performance on image-caption retrieval w.r.t. similar methods. Second, we show that retrieval-augmented multi-modal transformers using the trained alignment model improve results on VQA over strong baselines. We further conduct extensive experiments to establish the promise of this approach, and examine novel applications for inference time such as hot-swapping indices.
It is widely acknowledged that learning joint embeddings of recipes with images is challenging due to the diverse composition and deformation of ingredients in cooking procedures. We present a Multi-modal Semantics enhanced Joint Embedding approach ( MSJE) for learning a common feature space between the two modalities (text and image), with the ultimate goal of providing high-performance cross-modal retrieval services. Our MSJE approach has three unique features. First, we extract the TFIDF feature from the title, ingredients and cooking instructions of recipes. By determining the significance of word sequences through combining LSTM learned features with their TFIDF features, we encode a recipe into a TFIDF weighted vector for capturing significant key terms and how such key terms are used in the corresponding cooking instructions. Second, we combine the recipe TFIDF feature with the recipe sequence feature extracted through two-stage LSTM networks, which is effective in capturing the unique relationship between a recipe and its associated image(s). Third, we further incorporate TFIDF enhanced category semantics to improve the mapping of image modality and to regulate the similarity loss function during the iterative learning of cross-modal joint embedding. Experiments on the benchmark dataset Recipe1M show the proposed approach outperforms the state-of-the-art approaches.
Cross-modal retrieval methods build a common representation space for samples from multiple modalities, typically from the vision and the language domains. For images and their captions, the multiplicity of the correspondences makes the task particul arly challenging. Given an image (respectively a caption), there are multiple captions (respectively images) that equally make sense. In this paper, we argue that deterministic functions are not sufficiently powerful to capture such one-to-many correspondences. Instead, we propose to use Probabilistic Cross-Modal Embedding (PCME), where samples from the different modalities are represented as probabilistic distributions in the common embedding space. Since common benchmarks such as COCO suffer from non-exhaustive annotations for cross-modal matches, we propose to additionally evaluate retrieval on the CUB dataset, a smaller yet clean database where all possible image-caption pairs are annotated. We extensively ablate PCME and demonstrate that it not only improves the retrieval performance over its deterministic counterpart but also provides uncertainty estimates that render the embeddings more interpretable. Code is available at https://github.com/naver-ai/pcme
91 - Zhongwei Xie , Ling Liu , Lin Li 2021
This paper presents a three-tier modality alignment approach to learning text-image joint embedding, coined as JEMA, for cross-modal retrieval of cooking recipes and food images. The first tier improves recipe text embedding by optimizing the LSTM ne tworks with term extraction and ranking enhanced sequence patterns, and optimizes the image embedding by combining the ResNeXt-101 image encoder with the category embedding using wideResNet-50 with word2vec. The second tier modality alignment optimizes the textual-visual joint embedding loss function using a double batch-hard triplet loss with soft-margin optimization. The third modality alignment incorporates two types of cross-modality alignments as the auxiliary loss regularizations to further reduce the alignment errors in the joint learning of the two modality-specific embedding functions. The category-based cross-modal alignment aims to align the image category with the recipe category as a loss regularization to the joint embedding. The cross-modal discriminator-based alignment aims to add the visual-textual embedding distribution alignment to further regularize the joint embedding loss. Extensive experiments with the one-million recipes benchmark dataset Recipe1M demonstrate that the proposed JEMA approach outperforms the state-of-the-art cross-modal embedding methods for both image-to-recipe and recipe-to-image retrievals.
Data augmentation is an approach that can effectively improve the performance of multimodal machine learning. This paper introduces a generative model for data augmentation by leveraging the correlations among multiple modalities. Different from conv entional data augmentation approaches that apply low level operations with deterministic heuristics, our method proposes to learn an augmentation sampler that generates samples of the target modality conditioned on observed modalities in the variational auto-encoder framework. Additionally, the proposed model is able to quantify the confidence of augmented data by its generative probability, and can be jointly updated with a downstream pipeline. Experiments on Visual Question Answering tasks demonstrate the effectiveness of the proposed generative model, which is able to boost the strong UpDn-based models to the state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا