ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of text line recognition. Unlike most approaches targeting specific domains such as scene-text or handwritten documents, we investigate the general problem of developing a universal architecture that can extract text from any image, regardless of source or input modality. We consider two decoder families (Connectionist Temporal Classification and Transformer) and three encoder modules (Bidirectional LSTMs, Self-Attention, and GRCLs), and conduct extensive experiments to compare their accuracy and performance on widely used public datasets of scene and handwritten text. We find that a combination that so far has received little attention in the literature, namely a Self-Attention encoder coupled with the CTC decoder, when compounded with an external language model and trained on both public and internal data, outperforms all the others in accuracy and computational complexity. Unlike the more common Transformer-based models, this architecture can handle inputs of arbitrary length, a requirement for universal line recognition. Using an internal dataset collected from multiple sources, we also expose the limitations of current public datasets in evaluating the accuracy of line recognizers, as the relatively narrow image width and sequence length distributions do not allow to observe the quality degradation of the Transformer approach when applied to the transcription of long lines.
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face commo
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the trans
Convolutional Recurrent Neural Networks (CRNNs) excel at scene text recognition. Unfortunately, they are likely to suffer from vanishing/exploding gradient problems when processing long text images, which are commonly found in scanned documents. This
Text segmentation is a prerequisite in many real-world text-related tasks, e.g., text style transfer, and scene text removal. However, facing the lack of high-quality datasets and dedicated investigations, this critical prerequisite has been left as
Scene text recognition models have advanced greatly in recent years. Inspired by human reading we characterize two important scene text recognition models by measuring their domains i.e. the range of stimulus images that they can read. The domain spe