ﻻ يوجد ملخص باللغة العربية
Text segmentation is a prerequisite in many real-world text-related tasks, e.g., text style transfer, and scene text removal. However, facing the lack of high-quality datasets and dedicated investigations, this critical prerequisite has been left as an assumption in many works, and has been largely overlooked by current research. To bridge this gap, we proposed TextSeg, a large-scale fine-annotated text dataset with six types of annotations: word- and character-wise bounding polygons, masks and transcriptions. We also introduce Text Refinement Network (TexRNet), a novel text segmentation approach that adapts to the unique properties of text, e.g. non-convex boundary, diverse texture, etc., which often impose burdens on traditional segmentation models. In our TexRNet, we propose text specific network designs to address such challenges, including key features pooling and attention-based similarity checking. We also introduce trimap and discriminator losses that show significant improvement on text segmentation. Extensive experiments are carried out on both our TextSeg dataset and other existing datasets. We demonstrate that TexRNet consistently improves text segmentation performance by nearly 2% compared to other state-of-the-art segmentation methods. Our dataset and code will be made available at https://github.com/SHI-Labs/Rethinking-Text-Segmentation.
Text detection in natural scene images for content analysis is an interesting task. The research community has seen some great developments for English/Mandarin text detection. However, Urdu text extraction in natural scene images is a task not well
In this paper, we study the problem of text line recognition. Unlike most approaches targeting specific domains such as scene-text or handwritten documents, we investigate the general problem of developing a universal architecture that can extract te
Text-based visual question answering (VQA) requires to read and understand text in an image to correctly answer a given question. However, most current methods simply add optical character recognition (OCR) tokens extracted from the image into the VQ
Over the past few years, the field of scene text detection has progressed rapidly that modern text detectors are able to hunt text in various challenging scenarios. However, they might still fall short when handling text instances of extreme aspect r
Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the trans